This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmsymgrfix.s | |- S = ( SymGrp ` N ) |
|
| gsmsymgrfix.b | |- B = ( Base ` S ) |
||
| gsmsymgreq.z | |- Z = ( SymGrp ` M ) |
||
| gsmsymgreq.p | |- P = ( Base ` Z ) |
||
| gsmsymgreq.i | |- I = ( N i^i M ) |
||
| Assertion | gsmsymgreq | |- ( ( ( N e. Fin /\ M e. Fin ) /\ ( W e. Word B /\ U e. Word P /\ ( # ` W ) = ( # ` U ) ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmsymgrfix.s | |- S = ( SymGrp ` N ) |
|
| 2 | gsmsymgrfix.b | |- B = ( Base ` S ) |
|
| 3 | gsmsymgreq.z | |- Z = ( SymGrp ` M ) |
|
| 4 | gsmsymgreq.p | |- P = ( Base ` Z ) |
|
| 5 | gsmsymgreq.i | |- I = ( N i^i M ) |
|
| 6 | fveq2 | |- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
|
| 7 | 6 | oveq2d | |- ( w = (/) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` (/) ) ) ) |
| 8 | 7 | adantr | |- ( ( w = (/) /\ u = (/) ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` (/) ) ) ) |
| 9 | fveq1 | |- ( w = (/) -> ( w ` i ) = ( (/) ` i ) ) |
|
| 10 | 9 | fveq1d | |- ( w = (/) -> ( ( w ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) |
| 11 | fveq1 | |- ( u = (/) -> ( u ` i ) = ( (/) ` i ) ) |
|
| 12 | 11 | fveq1d | |- ( u = (/) -> ( ( u ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) |
| 13 | 10 12 | eqeqan12d | |- ( ( w = (/) /\ u = (/) ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) |
| 14 | 13 | ralbidv | |- ( ( w = (/) /\ u = (/) ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) |
| 15 | 8 14 | raleqbidv | |- ( ( w = (/) /\ u = (/) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) |
| 16 | oveq2 | |- ( w = (/) -> ( S gsum w ) = ( S gsum (/) ) ) |
|
| 17 | 16 | fveq1d | |- ( w = (/) -> ( ( S gsum w ) ` n ) = ( ( S gsum (/) ) ` n ) ) |
| 18 | oveq2 | |- ( u = (/) -> ( Z gsum u ) = ( Z gsum (/) ) ) |
|
| 19 | 18 | fveq1d | |- ( u = (/) -> ( ( Z gsum u ) ` n ) = ( ( Z gsum (/) ) ` n ) ) |
| 20 | 17 19 | eqeqan12d | |- ( ( w = (/) /\ u = (/) ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) |
| 21 | 20 | ralbidv | |- ( ( w = (/) /\ u = (/) ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) |
| 22 | 15 21 | imbi12d | |- ( ( w = (/) /\ u = (/) ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) ) |
| 23 | 22 | imbi2d | |- ( ( w = (/) /\ u = (/) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) ) ) |
| 24 | fveq2 | |- ( w = x -> ( # ` w ) = ( # ` x ) ) |
|
| 25 | 24 | oveq2d | |- ( w = x -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` x ) ) ) |
| 26 | 25 | adantr | |- ( ( w = x /\ u = y ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` x ) ) ) |
| 27 | fveq1 | |- ( w = x -> ( w ` i ) = ( x ` i ) ) |
|
| 28 | 27 | fveq1d | |- ( w = x -> ( ( w ` i ) ` n ) = ( ( x ` i ) ` n ) ) |
| 29 | fveq1 | |- ( u = y -> ( u ` i ) = ( y ` i ) ) |
|
| 30 | 29 | fveq1d | |- ( u = y -> ( ( u ` i ) ` n ) = ( ( y ` i ) ` n ) ) |
| 31 | 28 30 | eqeqan12d | |- ( ( w = x /\ u = y ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) |
| 32 | 31 | ralbidv | |- ( ( w = x /\ u = y ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) |
| 33 | 26 32 | raleqbidv | |- ( ( w = x /\ u = y ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) |
| 34 | oveq2 | |- ( w = x -> ( S gsum w ) = ( S gsum x ) ) |
|
| 35 | 34 | fveq1d | |- ( w = x -> ( ( S gsum w ) ` n ) = ( ( S gsum x ) ` n ) ) |
| 36 | oveq2 | |- ( u = y -> ( Z gsum u ) = ( Z gsum y ) ) |
|
| 37 | 36 | fveq1d | |- ( u = y -> ( ( Z gsum u ) ` n ) = ( ( Z gsum y ) ` n ) ) |
| 38 | 35 37 | eqeqan12d | |- ( ( w = x /\ u = y ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) |
| 39 | 38 | ralbidv | |- ( ( w = x /\ u = y ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) |
| 40 | 33 39 | imbi12d | |- ( ( w = x /\ u = y ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) ) |
| 41 | 40 | imbi2d | |- ( ( w = x /\ u = y ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) ) ) |
| 42 | fveq2 | |- ( w = ( x ++ <" b "> ) -> ( # ` w ) = ( # ` ( x ++ <" b "> ) ) ) |
|
| 43 | 42 | oveq2d | |- ( w = ( x ++ <" b "> ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) ) |
| 44 | 43 | adantr | |- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) ) |
| 45 | fveq1 | |- ( w = ( x ++ <" b "> ) -> ( w ` i ) = ( ( x ++ <" b "> ) ` i ) ) |
|
| 46 | 45 | fveq1d | |- ( w = ( x ++ <" b "> ) -> ( ( w ` i ) ` n ) = ( ( ( x ++ <" b "> ) ` i ) ` n ) ) |
| 47 | fveq1 | |- ( u = ( y ++ <" p "> ) -> ( u ` i ) = ( ( y ++ <" p "> ) ` i ) ) |
|
| 48 | 47 | fveq1d | |- ( u = ( y ++ <" p "> ) -> ( ( u ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) |
| 49 | 46 48 | eqeqan12d | |- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) |
| 50 | 49 | ralbidv | |- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) |
| 51 | 44 50 | raleqbidv | |- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) |
| 52 | oveq2 | |- ( w = ( x ++ <" b "> ) -> ( S gsum w ) = ( S gsum ( x ++ <" b "> ) ) ) |
|
| 53 | 52 | fveq1d | |- ( w = ( x ++ <" b "> ) -> ( ( S gsum w ) ` n ) = ( ( S gsum ( x ++ <" b "> ) ) ` n ) ) |
| 54 | oveq2 | |- ( u = ( y ++ <" p "> ) -> ( Z gsum u ) = ( Z gsum ( y ++ <" p "> ) ) ) |
|
| 55 | 54 | fveq1d | |- ( u = ( y ++ <" p "> ) -> ( ( Z gsum u ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) |
| 56 | 53 55 | eqeqan12d | |- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) |
| 57 | 56 | ralbidv | |- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) |
| 58 | 51 57 | imbi12d | |- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) |
| 59 | 58 | imbi2d | |- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) |
| 60 | fveq2 | |- ( w = W -> ( # ` w ) = ( # ` W ) ) |
|
| 61 | 60 | oveq2d | |- ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 62 | fveq1 | |- ( w = W -> ( w ` i ) = ( W ` i ) ) |
|
| 63 | 62 | fveq1d | |- ( w = W -> ( ( w ` i ) ` n ) = ( ( W ` i ) ` n ) ) |
| 64 | 63 | eqeq1d | |- ( w = W -> ( ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
| 65 | 64 | ralbidv | |- ( w = W -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
| 66 | 61 65 | raleqbidv | |- ( w = W -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
| 67 | oveq2 | |- ( w = W -> ( S gsum w ) = ( S gsum W ) ) |
|
| 68 | 67 | fveq1d | |- ( w = W -> ( ( S gsum w ) ` n ) = ( ( S gsum W ) ` n ) ) |
| 69 | 68 | eqeq1d | |- ( w = W -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) <-> ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
| 70 | 69 | ralbidv | |- ( w = W -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) <-> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
| 71 | 66 70 | imbi12d | |- ( w = W -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) |
| 72 | 71 | imbi2d | |- ( w = W -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) ) |
| 73 | fveq1 | |- ( u = U -> ( u ` i ) = ( U ` i ) ) |
|
| 74 | 73 | fveq1d | |- ( u = U -> ( ( u ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
| 75 | 74 | eqeq2d | |- ( u = U -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
| 76 | 75 | ralbidv | |- ( u = U -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
| 77 | 76 | ralbidv | |- ( u = U -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
| 78 | oveq2 | |- ( u = U -> ( Z gsum u ) = ( Z gsum U ) ) |
|
| 79 | 78 | fveq1d | |- ( u = U -> ( ( Z gsum u ) ` n ) = ( ( Z gsum U ) ` n ) ) |
| 80 | 79 | eqeq2d | |- ( u = U -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
| 81 | 80 | ralbidv | |- ( u = U -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
| 82 | 77 81 | imbi12d | |- ( u = U -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) |
| 83 | 82 | imbi2d | |- ( u = U -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) ) |
| 84 | eleq2 | |- ( I = ( N i^i M ) -> ( n e. I <-> n e. ( N i^i M ) ) ) |
|
| 85 | elin | |- ( n e. ( N i^i M ) <-> ( n e. N /\ n e. M ) ) |
|
| 86 | 84 85 | bitrdi | |- ( I = ( N i^i M ) -> ( n e. I <-> ( n e. N /\ n e. M ) ) ) |
| 87 | simpl | |- ( ( n e. N /\ n e. M ) -> n e. N ) |
|
| 88 | 86 87 | biimtrdi | |- ( I = ( N i^i M ) -> ( n e. I -> n e. N ) ) |
| 89 | 5 88 | ax-mp | |- ( n e. I -> n e. N ) |
| 90 | 89 | adantl | |- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> n e. N ) |
| 91 | fvresi | |- ( n e. N -> ( ( _I |` N ) ` n ) = n ) |
|
| 92 | 90 91 | syl | |- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` N ) ` n ) = n ) |
| 93 | simpr | |- ( ( n e. N /\ n e. M ) -> n e. M ) |
|
| 94 | 86 93 | biimtrdi | |- ( I = ( N i^i M ) -> ( n e. I -> n e. M ) ) |
| 95 | 5 94 | ax-mp | |- ( n e. I -> n e. M ) |
| 96 | 95 | adantl | |- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> n e. M ) |
| 97 | fvresi | |- ( n e. M -> ( ( _I |` M ) ` n ) = n ) |
|
| 98 | 96 97 | syl | |- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` M ) ` n ) = n ) |
| 99 | 92 98 | eqtr4d | |- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) |
| 100 | 99 | ralrimiva | |- ( ( N e. Fin /\ M e. Fin ) -> A. n e. I ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) |
| 101 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 102 | 101 | gsum0 | |- ( S gsum (/) ) = ( 0g ` S ) |
| 103 | 1 | symgid | |- ( N e. Fin -> ( _I |` N ) = ( 0g ` S ) ) |
| 104 | 103 | adantr | |- ( ( N e. Fin /\ M e. Fin ) -> ( _I |` N ) = ( 0g ` S ) ) |
| 105 | 102 104 | eqtr4id | |- ( ( N e. Fin /\ M e. Fin ) -> ( S gsum (/) ) = ( _I |` N ) ) |
| 106 | 105 | fveq1d | |- ( ( N e. Fin /\ M e. Fin ) -> ( ( S gsum (/) ) ` n ) = ( ( _I |` N ) ` n ) ) |
| 107 | eqid | |- ( 0g ` Z ) = ( 0g ` Z ) |
|
| 108 | 107 | gsum0 | |- ( Z gsum (/) ) = ( 0g ` Z ) |
| 109 | 3 | symgid | |- ( M e. Fin -> ( _I |` M ) = ( 0g ` Z ) ) |
| 110 | 109 | adantl | |- ( ( N e. Fin /\ M e. Fin ) -> ( _I |` M ) = ( 0g ` Z ) ) |
| 111 | 108 110 | eqtr4id | |- ( ( N e. Fin /\ M e. Fin ) -> ( Z gsum (/) ) = ( _I |` M ) ) |
| 112 | 111 | fveq1d | |- ( ( N e. Fin /\ M e. Fin ) -> ( ( Z gsum (/) ) ` n ) = ( ( _I |` M ) ` n ) ) |
| 113 | 106 112 | eqeq12d | |- ( ( N e. Fin /\ M e. Fin ) -> ( ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) <-> ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) ) |
| 114 | 113 | ralbidv | |- ( ( N e. Fin /\ M e. Fin ) -> ( A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) <-> A. n e. I ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) ) |
| 115 | 100 114 | mpbird | |- ( ( N e. Fin /\ M e. Fin ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) |
| 116 | 115 | a1d | |- ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) |
| 117 | 1 2 3 4 5 | gsmsymgreqlem2 | |- ( ( ( N e. Fin /\ M e. Fin ) /\ ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) |
| 118 | 117 | expcom | |- ( ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) |
| 119 | 118 | a2d | |- ( ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) |
| 120 | 23 41 59 72 83 116 119 | wrd2ind | |- ( ( W e. Word B /\ U e. Word P /\ ( # ` W ) = ( # ` U ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) |
| 121 | 120 | impcom | |- ( ( ( N e. Fin /\ M e. Fin ) /\ ( W e. Word B /\ U e. Word P /\ ( # ` W ) = ( # ` U ) ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |