This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmsymgrfix.s | |- S = ( SymGrp ` N ) |
|
| gsmsymgrfix.b | |- B = ( Base ` S ) |
||
| Assertion | gsmsymgrfix | |- ( ( N e. Fin /\ K e. N /\ W e. Word B ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmsymgrfix.s | |- S = ( SymGrp ` N ) |
|
| 2 | gsmsymgrfix.b | |- B = ( Base ` S ) |
|
| 3 | hasheq0 | |- ( w e. _V -> ( ( # ` w ) = 0 <-> w = (/) ) ) |
|
| 4 | 3 | elv | |- ( ( # ` w ) = 0 <-> w = (/) ) |
| 5 | 4 | biimpri | |- ( w = (/) -> ( # ` w ) = 0 ) |
| 6 | 5 | oveq2d | |- ( w = (/) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ 0 ) ) |
| 7 | fzo0 | |- ( 0 ..^ 0 ) = (/) |
|
| 8 | 6 7 | eqtrdi | |- ( w = (/) -> ( 0 ..^ ( # ` w ) ) = (/) ) |
| 9 | fveq1 | |- ( w = (/) -> ( w ` i ) = ( (/) ` i ) ) |
|
| 10 | 9 | fveq1d | |- ( w = (/) -> ( ( w ` i ) ` K ) = ( ( (/) ` i ) ` K ) ) |
| 11 | 10 | eqeq1d | |- ( w = (/) -> ( ( ( w ` i ) ` K ) = K <-> ( ( (/) ` i ) ` K ) = K ) ) |
| 12 | 8 11 | raleqbidv | |- ( w = (/) -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K <-> A. i e. (/) ( ( (/) ` i ) ` K ) = K ) ) |
| 13 | oveq2 | |- ( w = (/) -> ( S gsum w ) = ( S gsum (/) ) ) |
|
| 14 | 13 | fveq1d | |- ( w = (/) -> ( ( S gsum w ) ` K ) = ( ( S gsum (/) ) ` K ) ) |
| 15 | 14 | eqeq1d | |- ( w = (/) -> ( ( ( S gsum w ) ` K ) = K <-> ( ( S gsum (/) ) ` K ) = K ) ) |
| 16 | 12 15 | imbi12d | |- ( w = (/) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K -> ( ( S gsum w ) ` K ) = K ) <-> ( A. i e. (/) ( ( (/) ` i ) ` K ) = K -> ( ( S gsum (/) ) ` K ) = K ) ) ) |
| 17 | 16 | imbi2d | |- ( w = (/) -> ( ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K -> ( ( S gsum w ) ` K ) = K ) ) <-> ( ( N e. Fin /\ K e. N ) -> ( A. i e. (/) ( ( (/) ` i ) ` K ) = K -> ( ( S gsum (/) ) ` K ) = K ) ) ) ) |
| 18 | fveq2 | |- ( w = y -> ( # ` w ) = ( # ` y ) ) |
|
| 19 | 18 | oveq2d | |- ( w = y -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` y ) ) ) |
| 20 | fveq1 | |- ( w = y -> ( w ` i ) = ( y ` i ) ) |
|
| 21 | 20 | fveq1d | |- ( w = y -> ( ( w ` i ) ` K ) = ( ( y ` i ) ` K ) ) |
| 22 | 21 | eqeq1d | |- ( w = y -> ( ( ( w ` i ) ` K ) = K <-> ( ( y ` i ) ` K ) = K ) ) |
| 23 | 19 22 | raleqbidv | |- ( w = y -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K ) ) |
| 24 | oveq2 | |- ( w = y -> ( S gsum w ) = ( S gsum y ) ) |
|
| 25 | 24 | fveq1d | |- ( w = y -> ( ( S gsum w ) ` K ) = ( ( S gsum y ) ` K ) ) |
| 26 | 25 | eqeq1d | |- ( w = y -> ( ( ( S gsum w ) ` K ) = K <-> ( ( S gsum y ) ` K ) = K ) ) |
| 27 | 23 26 | imbi12d | |- ( w = y -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K -> ( ( S gsum w ) ` K ) = K ) <-> ( A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K -> ( ( S gsum y ) ` K ) = K ) ) ) |
| 28 | 27 | imbi2d | |- ( w = y -> ( ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K -> ( ( S gsum w ) ` K ) = K ) ) <-> ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K -> ( ( S gsum y ) ` K ) = K ) ) ) ) |
| 29 | fveq2 | |- ( w = ( y ++ <" z "> ) -> ( # ` w ) = ( # ` ( y ++ <" z "> ) ) ) |
|
| 30 | 29 | oveq2d | |- ( w = ( y ++ <" z "> ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ) |
| 31 | fveq1 | |- ( w = ( y ++ <" z "> ) -> ( w ` i ) = ( ( y ++ <" z "> ) ` i ) ) |
|
| 32 | 31 | fveq1d | |- ( w = ( y ++ <" z "> ) -> ( ( w ` i ) ` K ) = ( ( ( y ++ <" z "> ) ` i ) ` K ) ) |
| 33 | 32 | eqeq1d | |- ( w = ( y ++ <" z "> ) -> ( ( ( w ` i ) ` K ) = K <-> ( ( ( y ++ <" z "> ) ` i ) ` K ) = K ) ) |
| 34 | 30 33 | raleqbidv | |- ( w = ( y ++ <" z "> ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K ) ) |
| 35 | oveq2 | |- ( w = ( y ++ <" z "> ) -> ( S gsum w ) = ( S gsum ( y ++ <" z "> ) ) ) |
|
| 36 | 35 | fveq1d | |- ( w = ( y ++ <" z "> ) -> ( ( S gsum w ) ` K ) = ( ( S gsum ( y ++ <" z "> ) ) ` K ) ) |
| 37 | 36 | eqeq1d | |- ( w = ( y ++ <" z "> ) -> ( ( ( S gsum w ) ` K ) = K <-> ( ( S gsum ( y ++ <" z "> ) ) ` K ) = K ) ) |
| 38 | 34 37 | imbi12d | |- ( w = ( y ++ <" z "> ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K -> ( ( S gsum w ) ` K ) = K ) <-> ( A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K -> ( ( S gsum ( y ++ <" z "> ) ) ` K ) = K ) ) ) |
| 39 | 38 | imbi2d | |- ( w = ( y ++ <" z "> ) -> ( ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K -> ( ( S gsum w ) ` K ) = K ) ) <-> ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K -> ( ( S gsum ( y ++ <" z "> ) ) ` K ) = K ) ) ) ) |
| 40 | fveq2 | |- ( w = W -> ( # ` w ) = ( # ` W ) ) |
|
| 41 | 40 | oveq2d | |- ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 42 | fveq1 | |- ( w = W -> ( w ` i ) = ( W ` i ) ) |
|
| 43 | 42 | fveq1d | |- ( w = W -> ( ( w ` i ) ` K ) = ( ( W ` i ) ` K ) ) |
| 44 | 43 | eqeq1d | |- ( w = W -> ( ( ( w ` i ) ` K ) = K <-> ( ( W ` i ) ` K ) = K ) ) |
| 45 | 41 44 | raleqbidv | |- ( w = W -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K ) ) |
| 46 | oveq2 | |- ( w = W -> ( S gsum w ) = ( S gsum W ) ) |
|
| 47 | 46 | fveq1d | |- ( w = W -> ( ( S gsum w ) ` K ) = ( ( S gsum W ) ` K ) ) |
| 48 | 47 | eqeq1d | |- ( w = W -> ( ( ( S gsum w ) ` K ) = K <-> ( ( S gsum W ) ` K ) = K ) ) |
| 49 | 45 48 | imbi12d | |- ( w = W -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K -> ( ( S gsum w ) ` K ) = K ) <-> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) ) |
| 50 | 49 | imbi2d | |- ( w = W -> ( ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( w ` i ) ` K ) = K -> ( ( S gsum w ) ` K ) = K ) ) <-> ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) ) ) |
| 51 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 52 | 51 | gsum0 | |- ( S gsum (/) ) = ( 0g ` S ) |
| 53 | 1 | symgid | |- ( N e. Fin -> ( _I |` N ) = ( 0g ` S ) ) |
| 54 | 53 | adantr | |- ( ( N e. Fin /\ K e. N ) -> ( _I |` N ) = ( 0g ` S ) ) |
| 55 | 52 54 | eqtr4id | |- ( ( N e. Fin /\ K e. N ) -> ( S gsum (/) ) = ( _I |` N ) ) |
| 56 | 55 | fveq1d | |- ( ( N e. Fin /\ K e. N ) -> ( ( S gsum (/) ) ` K ) = ( ( _I |` N ) ` K ) ) |
| 57 | fvresi | |- ( K e. N -> ( ( _I |` N ) ` K ) = K ) |
|
| 58 | 57 | adantl | |- ( ( N e. Fin /\ K e. N ) -> ( ( _I |` N ) ` K ) = K ) |
| 59 | 56 58 | eqtrd | |- ( ( N e. Fin /\ K e. N ) -> ( ( S gsum (/) ) ` K ) = K ) |
| 60 | 59 | a1d | |- ( ( N e. Fin /\ K e. N ) -> ( A. i e. (/) ( ( (/) ` i ) ` K ) = K -> ( ( S gsum (/) ) ` K ) = K ) ) |
| 61 | ccatws1len | |- ( y e. Word B -> ( # ` ( y ++ <" z "> ) ) = ( ( # ` y ) + 1 ) ) |
|
| 62 | 61 | oveq2d | |- ( y e. Word B -> ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) = ( 0 ..^ ( ( # ` y ) + 1 ) ) ) |
| 63 | 62 | raleqdv | |- ( y e. Word B -> ( A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( ( # ` y ) + 1 ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K ) ) |
| 64 | 63 | adantr | |- ( ( y e. Word B /\ z e. B ) -> ( A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( ( # ` y ) + 1 ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K ) ) |
| 65 | 64 | adantr | |- ( ( ( y e. Word B /\ z e. B ) /\ ( ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K -> ( ( S gsum y ) ` K ) = K ) ) ) -> ( A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( ( # ` y ) + 1 ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K ) ) |
| 66 | 1 2 | gsmsymgrfixlem1 | |- ( ( ( y e. Word B /\ z e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K -> ( ( S gsum y ) ` K ) = K ) ) -> ( A. i e. ( 0 ..^ ( ( # ` y ) + 1 ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K -> ( ( S gsum ( y ++ <" z "> ) ) ` K ) = K ) ) |
| 67 | 66 | 3expb | |- ( ( ( y e. Word B /\ z e. B ) /\ ( ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K -> ( ( S gsum y ) ` K ) = K ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` y ) + 1 ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K -> ( ( S gsum ( y ++ <" z "> ) ) ` K ) = K ) ) |
| 68 | 65 67 | sylbid | |- ( ( ( y e. Word B /\ z e. B ) /\ ( ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K -> ( ( S gsum y ) ` K ) = K ) ) ) -> ( A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K -> ( ( S gsum ( y ++ <" z "> ) ) ` K ) = K ) ) |
| 69 | 68 | exp32 | |- ( ( y e. Word B /\ z e. B ) -> ( ( N e. Fin /\ K e. N ) -> ( ( A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K -> ( ( S gsum y ) ` K ) = K ) -> ( A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K -> ( ( S gsum ( y ++ <" z "> ) ) ` K ) = K ) ) ) ) |
| 70 | 69 | a2d | |- ( ( y e. Word B /\ z e. B ) -> ( ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` y ) ) ( ( y ` i ) ` K ) = K -> ( ( S gsum y ) ` K ) = K ) ) -> ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` ( y ++ <" z "> ) ) ) ( ( ( y ++ <" z "> ) ` i ) ` K ) = K -> ( ( S gsum ( y ++ <" z "> ) ) ` K ) = K ) ) ) ) |
| 71 | 17 28 39 50 60 70 | wrdind | |- ( W e. Word B -> ( ( N e. Fin /\ K e. N ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) ) |
| 72 | 71 | com12 | |- ( ( N e. Fin /\ K e. N ) -> ( W e. Word B -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) ) |
| 73 | 72 | 3impia | |- ( ( N e. Fin /\ K e. N /\ W e. Word B ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) |