This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for psgndif . (Contributed by AV, 31-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfix.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| psgnfix.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
||
| psgnfix.s | |- S = ( SymGrp ` ( N \ { K } ) ) |
||
| psgnfix.z | |- Z = ( SymGrp ` N ) |
||
| psgnfix.r | |- R = ran ( pmTrsp ` N ) |
||
| Assertion | psgndiflemA | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfix.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | psgnfix.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 3 | psgnfix.s | |- S = ( SymGrp ` ( N \ { K } ) ) |
|
| 4 | psgnfix.z | |- Z = ( SymGrp ` N ) |
|
| 5 | psgnfix.r | |- R = ran ( pmTrsp ` N ) |
|
| 6 | fveq2 | |- ( w = W -> ( # ` w ) = ( # ` W ) ) |
|
| 7 | 6 | eqeq1d | |- ( w = W -> ( ( # ` w ) = ( # ` r ) <-> ( # ` W ) = ( # ` r ) ) ) |
| 8 | 6 | oveq2d | |- ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 9 | fveq1 | |- ( w = W -> ( w ` i ) = ( W ` i ) ) |
|
| 10 | 9 | fveq1d | |- ( w = W -> ( ( w ` i ) ` n ) = ( ( W ` i ) ` n ) ) |
| 11 | 10 | eqeq1d | |- ( w = W -> ( ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) |
| 12 | 11 | ralbidv | |- ( w = W -> ( A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) <-> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) |
| 13 | 12 | anbi2d | |- ( w = W -> ( ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) <-> ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) |
| 14 | 8 13 | raleqbidv | |- ( w = W -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) |
| 15 | 7 14 | anbi12d | |- ( w = W -> ( ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) <-> ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
| 16 | 15 | rexbidv | |- ( w = W -> ( E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) <-> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
| 17 | 16 | rspccv | |- ( A. w e. Word T E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( W e. Word T -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
| 18 | 2 5 | pmtrdifwrdel2 | |- ( K e. N -> A. w e. Word T E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) |
| 19 | 17 18 | syl11 | |- ( W e. Word T -> ( K e. N -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( K e. N -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
| 21 | 20 | com12 | |- ( K e. N -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
| 22 | 21 | ad2antlr | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
| 23 | 22 | imp | |- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) |
| 24 | oveq2 | |- ( ( # ` W ) = ( # ` r ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) |
|
| 25 | 24 | adantr | |- ( ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) |
| 26 | 25 | ad3antlr | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) |
| 27 | simplll | |- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> N e. Fin ) |
|
| 28 | 27 | ad2antlr | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> N e. Fin ) |
| 29 | simplll | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> r e. Word R ) |
|
| 30 | simprr3 | |- ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> U e. Word R ) |
|
| 31 | 30 | adantr | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> U e. Word R ) |
| 32 | simplrl | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) ) |
|
| 33 | 3simpa | |- ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) |
|
| 34 | 33 | adantl | |- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) |
| 35 | 34 | ad2antlr | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) |
| 36 | simplrl | |- ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> ( # ` W ) = ( # ` r ) ) |
|
| 37 | 36 | adantr | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( # ` W ) = ( # ` r ) ) |
| 38 | simplrr | |- ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) |
|
| 39 | 38 | adantr | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) |
| 40 | 1 2 3 4 5 | psgndiflemB | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) -> ( ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> Q = ( Z gsum r ) ) ) ) |
| 41 | 40 | imp31 | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> Q = ( Z gsum r ) ) |
| 42 | 41 | eqcomd | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> ( Z gsum r ) = Q ) |
| 43 | 32 35 29 37 39 42 | syl23anc | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( Z gsum r ) = Q ) |
| 44 | id | |- ( Q = ( ( SymGrp ` N ) gsum U ) -> Q = ( ( SymGrp ` N ) gsum U ) ) |
|
| 45 | 4 | eqcomi | |- ( SymGrp ` N ) = Z |
| 46 | 45 | oveq1i | |- ( ( SymGrp ` N ) gsum U ) = ( Z gsum U ) |
| 47 | 44 46 | eqtrdi | |- ( Q = ( ( SymGrp ` N ) gsum U ) -> Q = ( Z gsum U ) ) |
| 48 | 47 | adantl | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> Q = ( Z gsum U ) ) |
| 49 | 43 48 | eqtrd | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( Z gsum r ) = ( Z gsum U ) ) |
| 50 | 4 5 28 29 31 49 | psgnuni | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` U ) ) ) |
| 51 | 26 50 | eqtrd | |- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) |
| 52 | 51 | ex | |- ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) |
| 53 | 52 | ex | |- ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) |
| 54 | 53 | rexlimiva | |- ( E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) |
| 55 | 23 54 | mpcom | |- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) |
| 56 | 55 | ex | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) |