This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum of transpositions of a finite set is a permutation, see also psgneldm2i . (Contributed by AV, 19-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmtrcl.s | |- S = ( SymGrp ` N ) |
|
| gsmtrcl.b | |- B = ( Base ` S ) |
||
| gsmtrcl.t | |- T = ran ( pmTrsp ` N ) |
||
| Assertion | gsmtrcl | |- ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmtrcl.s | |- S = ( SymGrp ` N ) |
|
| 2 | gsmtrcl.b | |- B = ( Base ` S ) |
|
| 3 | gsmtrcl.t | |- T = ran ( pmTrsp ` N ) |
|
| 4 | eqid | |- ( pmSgn ` N ) = ( pmSgn ` N ) |
|
| 5 | 1 3 4 | psgneldm2i | |- ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. dom ( pmSgn ` N ) ) |
| 6 | 1 4 2 | psgneldm | |- ( ( S gsum W ) e. dom ( pmSgn ` N ) <-> ( ( S gsum W ) e. B /\ dom ( ( S gsum W ) \ _I ) e. Fin ) ) |
| 7 | ax-1 | |- ( ( S gsum W ) e. B -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
|
| 8 | 7 | adantr | |- ( ( ( S gsum W ) e. B /\ dom ( ( S gsum W ) \ _I ) e. Fin ) -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
| 9 | 6 8 | sylbi | |- ( ( S gsum W ) e. dom ( pmSgn ` N ) -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
| 10 | 5 9 | mpcom | |- ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) |