This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnblcld.1 | |- D = ( abs o. - ) |
|
| Assertion | cnbl0 | |- ( R e. RR* -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` D ) R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnblcld.1 | |- D = ( abs o. - ) |
|
| 2 | df-3an | |- ( ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) < R ) <-> ( ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) < R ) ) |
|
| 3 | abscl | |- ( x e. CC -> ( abs ` x ) e. RR ) |
|
| 4 | absge0 | |- ( x e. CC -> 0 <_ ( abs ` x ) ) |
|
| 5 | 3 4 | jca | |- ( x e. CC -> ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) ) ) |
| 6 | 5 | adantl | |- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) ) ) |
| 7 | 6 | biantrurd | |- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) < R <-> ( ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) < R ) ) ) |
| 8 | 2 7 | bitr4id | |- ( ( R e. RR* /\ x e. CC ) -> ( ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) < R ) <-> ( abs ` x ) < R ) ) |
| 9 | 0re | |- 0 e. RR |
|
| 10 | simpl | |- ( ( R e. RR* /\ x e. CC ) -> R e. RR* ) |
|
| 11 | elico2 | |- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` x ) e. ( 0 [,) R ) <-> ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) < R ) ) ) |
|
| 12 | 9 10 11 | sylancr | |- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,) R ) <-> ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) < R ) ) ) |
| 13 | 0cn | |- 0 e. CC |
|
| 14 | 1 | cnmetdval | |- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( 0 - x ) ) ) |
| 15 | abssub | |- ( ( 0 e. CC /\ x e. CC ) -> ( abs ` ( 0 - x ) ) = ( abs ` ( x - 0 ) ) ) |
|
| 16 | 14 15 | eqtrd | |- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
| 17 | 13 16 | mpan | |- ( x e. CC -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
| 18 | subid1 | |- ( x e. CC -> ( x - 0 ) = x ) |
|
| 19 | 18 | fveq2d | |- ( x e. CC -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
| 20 | 17 19 | eqtrd | |- ( x e. CC -> ( 0 D x ) = ( abs ` x ) ) |
| 21 | 20 | adantl | |- ( ( R e. RR* /\ x e. CC ) -> ( 0 D x ) = ( abs ` x ) ) |
| 22 | 21 | breq1d | |- ( ( R e. RR* /\ x e. CC ) -> ( ( 0 D x ) < R <-> ( abs ` x ) < R ) ) |
| 23 | 8 12 22 | 3bitr4d | |- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,) R ) <-> ( 0 D x ) < R ) ) |
| 24 | 23 | pm5.32da | |- ( R e. RR* -> ( ( x e. CC /\ ( abs ` x ) e. ( 0 [,) R ) ) <-> ( x e. CC /\ ( 0 D x ) < R ) ) ) |
| 25 | absf | |- abs : CC --> RR |
|
| 26 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 27 | 25 26 | ax-mp | |- abs Fn CC |
| 28 | elpreima | |- ( abs Fn CC -> ( x e. ( `' abs " ( 0 [,) R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,) R ) ) ) ) |
|
| 29 | 27 28 | mp1i | |- ( R e. RR* -> ( x e. ( `' abs " ( 0 [,) R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,) R ) ) ) ) |
| 30 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 31 | 1 30 | eqeltri | |- D e. ( *Met ` CC ) |
| 32 | elbl | |- ( ( D e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR* ) -> ( x e. ( 0 ( ball ` D ) R ) <-> ( x e. CC /\ ( 0 D x ) < R ) ) ) |
|
| 33 | 31 13 32 | mp3an12 | |- ( R e. RR* -> ( x e. ( 0 ( ball ` D ) R ) <-> ( x e. CC /\ ( 0 D x ) < R ) ) ) |
| 34 | 24 29 33 | 3bitr4d | |- ( R e. RR* -> ( x e. ( `' abs " ( 0 [,) R ) ) <-> x e. ( 0 ( ball ` D ) R ) ) ) |
| 35 | 34 | eqrdv | |- ( R e. RR* -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` D ) R ) ) |