This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation involving divisibility by a prime power. (Contributed by Mario Carneiro, 2-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmpwdvds | |- ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) /\ ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) -> ( P ^ N ) || D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( k = K -> ( k x. ( P ^ N ) ) = ( K x. ( P ^ N ) ) ) |
|
| 2 | 1 | breq2d | |- ( k = K -> ( D || ( k x. ( P ^ N ) ) <-> D || ( K x. ( P ^ N ) ) ) ) |
| 3 | oveq1 | |- ( k = K -> ( k x. ( P ^ ( N - 1 ) ) ) = ( K x. ( P ^ ( N - 1 ) ) ) ) |
|
| 4 | 3 | breq2d | |- ( k = K -> ( D || ( k x. ( P ^ ( N - 1 ) ) ) <-> D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) |
| 5 | 4 | notbid | |- ( k = K -> ( -. D || ( k x. ( P ^ ( N - 1 ) ) ) <-> -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) |
| 6 | 2 5 | anbi12d | |- ( k = K -> ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) <-> ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) ) |
| 7 | 6 | imbi1d | |- ( k = K -> ( ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) <-> ( ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) |
| 8 | oveq2 | |- ( x = 1 -> ( P ^ x ) = ( P ^ 1 ) ) |
|
| 9 | 8 | oveq2d | |- ( x = 1 -> ( k x. ( P ^ x ) ) = ( k x. ( P ^ 1 ) ) ) |
| 10 | 9 | breq2d | |- ( x = 1 -> ( D || ( k x. ( P ^ x ) ) <-> D || ( k x. ( P ^ 1 ) ) ) ) |
| 11 | oveq1 | |- ( x = 1 -> ( x - 1 ) = ( 1 - 1 ) ) |
|
| 12 | 11 | oveq2d | |- ( x = 1 -> ( P ^ ( x - 1 ) ) = ( P ^ ( 1 - 1 ) ) ) |
| 13 | 12 | oveq2d | |- ( x = 1 -> ( k x. ( P ^ ( x - 1 ) ) ) = ( k x. ( P ^ ( 1 - 1 ) ) ) ) |
| 14 | 13 | breq2d | |- ( x = 1 -> ( D || ( k x. ( P ^ ( x - 1 ) ) ) <-> D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) ) |
| 15 | 14 | notbid | |- ( x = 1 -> ( -. D || ( k x. ( P ^ ( x - 1 ) ) ) <-> -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) ) |
| 16 | 10 15 | anbi12d | |- ( x = 1 -> ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) ) ) |
| 17 | 8 | breq1d | |- ( x = 1 -> ( ( P ^ x ) || D <-> ( P ^ 1 ) || D ) ) |
| 18 | 16 17 | imbi12d | |- ( x = 1 -> ( ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) ) |
| 19 | 18 | ralbidv | |- ( x = 1 -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> A. k e. ZZ ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) ) |
| 20 | 19 | imbi2d | |- ( x = 1 -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) ) <-> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) ) ) |
| 21 | oveq2 | |- ( x = n -> ( P ^ x ) = ( P ^ n ) ) |
|
| 22 | 21 | oveq2d | |- ( x = n -> ( k x. ( P ^ x ) ) = ( k x. ( P ^ n ) ) ) |
| 23 | 22 | breq2d | |- ( x = n -> ( D || ( k x. ( P ^ x ) ) <-> D || ( k x. ( P ^ n ) ) ) ) |
| 24 | oveq1 | |- ( x = n -> ( x - 1 ) = ( n - 1 ) ) |
|
| 25 | 24 | oveq2d | |- ( x = n -> ( P ^ ( x - 1 ) ) = ( P ^ ( n - 1 ) ) ) |
| 26 | 25 | oveq2d | |- ( x = n -> ( k x. ( P ^ ( x - 1 ) ) ) = ( k x. ( P ^ ( n - 1 ) ) ) ) |
| 27 | 26 | breq2d | |- ( x = n -> ( D || ( k x. ( P ^ ( x - 1 ) ) ) <-> D || ( k x. ( P ^ ( n - 1 ) ) ) ) ) |
| 28 | 27 | notbid | |- ( x = n -> ( -. D || ( k x. ( P ^ ( x - 1 ) ) ) <-> -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) ) |
| 29 | 23 28 | anbi12d | |- ( x = n -> ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) ) ) |
| 30 | 21 | breq1d | |- ( x = n -> ( ( P ^ x ) || D <-> ( P ^ n ) || D ) ) |
| 31 | 29 30 | imbi12d | |- ( x = n -> ( ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) |
| 32 | 31 | ralbidv | |- ( x = n -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) |
| 33 | 32 | imbi2d | |- ( x = n -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) ) <-> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) ) |
| 34 | oveq2 | |- ( x = ( n + 1 ) -> ( P ^ x ) = ( P ^ ( n + 1 ) ) ) |
|
| 35 | 34 | oveq2d | |- ( x = ( n + 1 ) -> ( k x. ( P ^ x ) ) = ( k x. ( P ^ ( n + 1 ) ) ) ) |
| 36 | 35 | breq2d | |- ( x = ( n + 1 ) -> ( D || ( k x. ( P ^ x ) ) <-> D || ( k x. ( P ^ ( n + 1 ) ) ) ) ) |
| 37 | oveq1 | |- ( x = ( n + 1 ) -> ( x - 1 ) = ( ( n + 1 ) - 1 ) ) |
|
| 38 | 37 | oveq2d | |- ( x = ( n + 1 ) -> ( P ^ ( x - 1 ) ) = ( P ^ ( ( n + 1 ) - 1 ) ) ) |
| 39 | 38 | oveq2d | |- ( x = ( n + 1 ) -> ( k x. ( P ^ ( x - 1 ) ) ) = ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) |
| 40 | 39 | breq2d | |- ( x = ( n + 1 ) -> ( D || ( k x. ( P ^ ( x - 1 ) ) ) <-> D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) ) |
| 41 | 40 | notbid | |- ( x = ( n + 1 ) -> ( -. D || ( k x. ( P ^ ( x - 1 ) ) ) <-> -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) ) |
| 42 | 36 41 | anbi12d | |- ( x = ( n + 1 ) -> ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) ) ) |
| 43 | 34 | breq1d | |- ( x = ( n + 1 ) -> ( ( P ^ x ) || D <-> ( P ^ ( n + 1 ) ) || D ) ) |
| 44 | 42 43 | imbi12d | |- ( x = ( n + 1 ) -> ( ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 45 | 44 | ralbidv | |- ( x = ( n + 1 ) -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 46 | 45 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) ) <-> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) ) |
| 47 | oveq2 | |- ( x = N -> ( P ^ x ) = ( P ^ N ) ) |
|
| 48 | 47 | oveq2d | |- ( x = N -> ( k x. ( P ^ x ) ) = ( k x. ( P ^ N ) ) ) |
| 49 | 48 | breq2d | |- ( x = N -> ( D || ( k x. ( P ^ x ) ) <-> D || ( k x. ( P ^ N ) ) ) ) |
| 50 | oveq1 | |- ( x = N -> ( x - 1 ) = ( N - 1 ) ) |
|
| 51 | 50 | oveq2d | |- ( x = N -> ( P ^ ( x - 1 ) ) = ( P ^ ( N - 1 ) ) ) |
| 52 | 51 | oveq2d | |- ( x = N -> ( k x. ( P ^ ( x - 1 ) ) ) = ( k x. ( P ^ ( N - 1 ) ) ) ) |
| 53 | 52 | breq2d | |- ( x = N -> ( D || ( k x. ( P ^ ( x - 1 ) ) ) <-> D || ( k x. ( P ^ ( N - 1 ) ) ) ) ) |
| 54 | 53 | notbid | |- ( x = N -> ( -. D || ( k x. ( P ^ ( x - 1 ) ) ) <-> -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) ) |
| 55 | 49 54 | anbi12d | |- ( x = N -> ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) ) ) |
| 56 | 47 | breq1d | |- ( x = N -> ( ( P ^ x ) || D <-> ( P ^ N ) || D ) ) |
| 57 | 55 56 | imbi12d | |- ( x = N -> ( ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) |
| 58 | 57 | ralbidv | |- ( x = N -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) <-> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) |
| 59 | 58 | imbi2d | |- ( x = N -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ x ) ) /\ -. D || ( k x. ( P ^ ( x - 1 ) ) ) ) -> ( P ^ x ) || D ) ) <-> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) ) |
| 60 | breq1 | |- ( x = D -> ( x || ( k x. P ) <-> D || ( k x. P ) ) ) |
|
| 61 | breq1 | |- ( x = D -> ( x || k <-> D || k ) ) |
|
| 62 | 61 | notbid | |- ( x = D -> ( -. x || k <-> -. D || k ) ) |
| 63 | 60 62 | anbi12d | |- ( x = D -> ( ( x || ( k x. P ) /\ -. x || k ) <-> ( D || ( k x. P ) /\ -. D || k ) ) ) |
| 64 | breq2 | |- ( x = D -> ( P || x <-> P || D ) ) |
|
| 65 | 63 64 | imbi12d | |- ( x = D -> ( ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) <-> ( ( D || ( k x. P ) /\ -. D || k ) -> P || D ) ) ) |
| 66 | 65 | imbi2d | |- ( x = D -> ( ( ( P e. Prime /\ k e. ZZ ) -> ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) ) <-> ( ( P e. Prime /\ k e. ZZ ) -> ( ( D || ( k x. P ) /\ -. D || k ) -> P || D ) ) ) ) |
| 67 | simplrl | |- ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> P e. Prime ) |
|
| 68 | simpll | |- ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> x e. ZZ ) |
|
| 69 | coprm | |- ( ( P e. Prime /\ x e. ZZ ) -> ( -. P || x <-> ( P gcd x ) = 1 ) ) |
|
| 70 | 67 68 69 | syl2anc | |- ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> ( -. P || x <-> ( P gcd x ) = 1 ) ) |
| 71 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 72 | 71 | ad2antll | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. CC ) |
| 73 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 74 | 73 | ad2antrl | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. ZZ ) |
| 75 | 74 | zcnd | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. CC ) |
| 76 | 72 75 | mulcomd | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. P ) = ( P x. k ) ) |
| 77 | 76 | breq2d | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( x || ( k x. P ) <-> x || ( P x. k ) ) ) |
| 78 | simpl | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> x e. ZZ ) |
|
| 79 | 74 78 | gcdcomd | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P gcd x ) = ( x gcd P ) ) |
| 80 | 79 | eqeq1d | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P gcd x ) = 1 <-> ( x gcd P ) = 1 ) ) |
| 81 | 77 80 | anbi12d | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( k x. P ) /\ ( P gcd x ) = 1 ) <-> ( x || ( P x. k ) /\ ( x gcd P ) = 1 ) ) ) |
| 82 | simprr | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. ZZ ) |
|
| 83 | coprmdvds | |- ( ( x e. ZZ /\ P e. ZZ /\ k e. ZZ ) -> ( ( x || ( P x. k ) /\ ( x gcd P ) = 1 ) -> x || k ) ) |
|
| 84 | 78 74 82 83 | syl3anc | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( P x. k ) /\ ( x gcd P ) = 1 ) -> x || k ) ) |
| 85 | 81 84 | sylbid | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( k x. P ) /\ ( P gcd x ) = 1 ) -> x || k ) ) |
| 86 | 85 | expdimp | |- ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> ( ( P gcd x ) = 1 -> x || k ) ) |
| 87 | 70 86 | sylbid | |- ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> ( -. P || x -> x || k ) ) |
| 88 | 87 | con1d | |- ( ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) /\ x || ( k x. P ) ) -> ( -. x || k -> P || x ) ) |
| 89 | 88 | expimpd | |- ( ( x e. ZZ /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) ) |
| 90 | 89 | ex | |- ( x e. ZZ -> ( ( P e. Prime /\ k e. ZZ ) -> ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) ) ) |
| 91 | 66 90 | vtoclga | |- ( D e. ZZ -> ( ( P e. Prime /\ k e. ZZ ) -> ( ( D || ( k x. P ) /\ -. D || k ) -> P || D ) ) ) |
| 92 | 91 | impl | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( ( D || ( k x. P ) /\ -. D || k ) -> P || D ) ) |
| 93 | 73 | zcnd | |- ( P e. Prime -> P e. CC ) |
| 94 | 93 | exp1d | |- ( P e. Prime -> ( P ^ 1 ) = P ) |
| 95 | 94 | ad2antlr | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( P ^ 1 ) = P ) |
| 96 | 95 | oveq2d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( k x. ( P ^ 1 ) ) = ( k x. P ) ) |
| 97 | 96 | breq2d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( D || ( k x. ( P ^ 1 ) ) <-> D || ( k x. P ) ) ) |
| 98 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 99 | 98 | oveq2i | |- ( P ^ ( 1 - 1 ) ) = ( P ^ 0 ) |
| 100 | 73 | ad2antlr | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> P e. ZZ ) |
| 101 | 100 | zcnd | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> P e. CC ) |
| 102 | 101 | exp0d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( P ^ 0 ) = 1 ) |
| 103 | 99 102 | eqtrid | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( P ^ ( 1 - 1 ) ) = 1 ) |
| 104 | 103 | oveq2d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( k x. ( P ^ ( 1 - 1 ) ) ) = ( k x. 1 ) ) |
| 105 | 71 | adantl | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> k e. CC ) |
| 106 | 105 | mulridd | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( k x. 1 ) = k ) |
| 107 | 104 106 | eqtrd | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( k x. ( P ^ ( 1 - 1 ) ) ) = k ) |
| 108 | 107 | breq2d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( D || ( k x. ( P ^ ( 1 - 1 ) ) ) <-> D || k ) ) |
| 109 | 108 | notbid | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) <-> -. D || k ) ) |
| 110 | 97 109 | anbi12d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) <-> ( D || ( k x. P ) /\ -. D || k ) ) ) |
| 111 | 101 | exp1d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( P ^ 1 ) = P ) |
| 112 | 111 | breq1d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( ( P ^ 1 ) || D <-> P || D ) ) |
| 113 | 92 110 112 | 3imtr4d | |- ( ( ( D e. ZZ /\ P e. Prime ) /\ k e. ZZ ) -> ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) |
| 114 | 113 | ralrimiva | |- ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ 1 ) ) /\ -. D || ( k x. ( P ^ ( 1 - 1 ) ) ) ) -> ( P ^ 1 ) || D ) ) |
| 115 | oveq1 | |- ( k = x -> ( k x. ( P ^ n ) ) = ( x x. ( P ^ n ) ) ) |
|
| 116 | 115 | breq2d | |- ( k = x -> ( D || ( k x. ( P ^ n ) ) <-> D || ( x x. ( P ^ n ) ) ) ) |
| 117 | oveq1 | |- ( k = x -> ( k x. ( P ^ ( n - 1 ) ) ) = ( x x. ( P ^ ( n - 1 ) ) ) ) |
|
| 118 | 117 | breq2d | |- ( k = x -> ( D || ( k x. ( P ^ ( n - 1 ) ) ) <-> D || ( x x. ( P ^ ( n - 1 ) ) ) ) ) |
| 119 | 118 | notbid | |- ( k = x -> ( -. D || ( k x. ( P ^ ( n - 1 ) ) ) <-> -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) ) |
| 120 | 116 119 | anbi12d | |- ( k = x -> ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) <-> ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) ) ) |
| 121 | 120 | imbi1d | |- ( k = x -> ( ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) <-> ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) |
| 122 | 121 | cbvralvw | |- ( A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) <-> A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) |
| 123 | simprr | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. ZZ ) |
|
| 124 | 73 | ad2antrl | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. ZZ ) |
| 125 | 123 124 | zmulcld | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. P ) e. ZZ ) |
| 126 | oveq1 | |- ( x = ( k x. P ) -> ( x x. ( P ^ n ) ) = ( ( k x. P ) x. ( P ^ n ) ) ) |
|
| 127 | 126 | breq2d | |- ( x = ( k x. P ) -> ( D || ( x x. ( P ^ n ) ) <-> D || ( ( k x. P ) x. ( P ^ n ) ) ) ) |
| 128 | oveq1 | |- ( x = ( k x. P ) -> ( x x. ( P ^ ( n - 1 ) ) ) = ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) |
|
| 129 | 128 | breq2d | |- ( x = ( k x. P ) -> ( D || ( x x. ( P ^ ( n - 1 ) ) ) <-> D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) ) |
| 130 | 129 | notbid | |- ( x = ( k x. P ) -> ( -. D || ( x x. ( P ^ ( n - 1 ) ) ) <-> -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) ) |
| 131 | 127 130 | anbi12d | |- ( x = ( k x. P ) -> ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) <-> ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) ) ) |
| 132 | 131 | imbi1d | |- ( x = ( k x. P ) -> ( ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) <-> ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) |
| 133 | 132 | rspcv | |- ( ( k x. P ) e. ZZ -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) |
| 134 | 125 133 | syl | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) ) |
| 135 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 136 | 135 | ad2antrr | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> n e. NN0 ) |
| 137 | zexpcl | |- ( ( P e. ZZ /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) |
|
| 138 | 124 136 137 | syl2anc | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. ZZ ) |
| 139 | simplr | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> D e. ZZ ) |
|
| 140 | divides | |- ( ( ( P ^ n ) e. ZZ /\ D e. ZZ ) -> ( ( P ^ n ) || D <-> E. x e. ZZ ( x x. ( P ^ n ) ) = D ) ) |
|
| 141 | 138 139 140 | syl2anc | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ n ) || D <-> E. x e. ZZ ( x x. ( P ^ n ) ) = D ) ) |
| 142 | 89 | adantll | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x || ( k x. P ) /\ -. x || k ) -> P || x ) ) |
| 143 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 144 | 143 | ad2antrl | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. NN ) |
| 145 | 144 | nncnd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. CC ) |
| 146 | 135 | ad2antrr | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> n e. NN0 ) |
| 147 | 145 146 | expp1d | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n + 1 ) ) = ( ( P ^ n ) x. P ) ) |
| 148 | 144 146 | nnexpcld | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. NN ) |
| 149 | 148 | nncnd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. CC ) |
| 150 | 149 145 | mulcomd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ n ) x. P ) = ( P x. ( P ^ n ) ) ) |
| 151 | 147 150 | eqtrd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n + 1 ) ) = ( P x. ( P ^ n ) ) ) |
| 152 | 151 | oveq2d | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P ^ ( n + 1 ) ) ) = ( k x. ( P x. ( P ^ n ) ) ) ) |
| 153 | 71 | ad2antll | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. CC ) |
| 154 | 153 145 149 | mulassd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ n ) ) = ( k x. ( P x. ( P ^ n ) ) ) ) |
| 155 | 152 154 | eqtr4d | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P ^ ( n + 1 ) ) ) = ( ( k x. P ) x. ( P ^ n ) ) ) |
| 156 | 155 | breq2d | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) <-> ( x x. ( P ^ n ) ) || ( ( k x. P ) x. ( P ^ n ) ) ) ) |
| 157 | simplr | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> x e. ZZ ) |
|
| 158 | simprr | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. ZZ ) |
|
| 159 | 144 | nnzd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. ZZ ) |
| 160 | 158 159 | zmulcld | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. P ) e. ZZ ) |
| 161 | 148 | nnzd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. ZZ ) |
| 162 | 148 | nnne0d | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) =/= 0 ) |
| 163 | dvdsmulcr | |- ( ( x e. ZZ /\ ( k x. P ) e. ZZ /\ ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 ) ) -> ( ( x x. ( P ^ n ) ) || ( ( k x. P ) x. ( P ^ n ) ) <-> x || ( k x. P ) ) ) |
|
| 164 | 157 160 161 162 163 | syl112anc | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x x. ( P ^ n ) ) || ( ( k x. P ) x. ( P ^ n ) ) <-> x || ( k x. P ) ) ) |
| 165 | 156 164 | bitrd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) <-> x || ( k x. P ) ) ) |
| 166 | dvdsmulcr | |- ( ( x e. ZZ /\ k e. ZZ /\ ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 ) ) -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> x || k ) ) |
|
| 167 | 157 158 161 162 166 | syl112anc | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> x || k ) ) |
| 168 | 167 | notbid | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> -. x || k ) ) |
| 169 | 165 168 | anbi12d | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) <-> ( x || ( k x. P ) /\ -. x || k ) ) ) |
| 170 | 151 | breq1d | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) <-> ( P x. ( P ^ n ) ) || ( x x. ( P ^ n ) ) ) ) |
| 171 | dvdsmulcr | |- ( ( P e. ZZ /\ x e. ZZ /\ ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 ) ) -> ( ( P x. ( P ^ n ) ) || ( x x. ( P ^ n ) ) <-> P || x ) ) |
|
| 172 | 159 157 161 162 171 | syl112anc | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P x. ( P ^ n ) ) || ( x x. ( P ^ n ) ) <-> P || x ) ) |
| 173 | 170 172 | bitrd | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) <-> P || x ) ) |
| 174 | 142 169 173 | 3imtr4d | |- ( ( ( n e. NN /\ x e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) ) ) |
| 175 | 174 | an32s | |- ( ( ( n e. NN /\ ( P e. Prime /\ k e. ZZ ) ) /\ x e. ZZ ) -> ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) ) ) |
| 176 | breq1 | |- ( ( x x. ( P ^ n ) ) = D -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) <-> D || ( k x. ( P ^ ( n + 1 ) ) ) ) ) |
|
| 177 | breq1 | |- ( ( x x. ( P ^ n ) ) = D -> ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> D || ( k x. ( P ^ n ) ) ) ) |
|
| 178 | 177 | notbid | |- ( ( x x. ( P ^ n ) ) = D -> ( -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) <-> -. D || ( k x. ( P ^ n ) ) ) ) |
| 179 | 176 178 | anbi12d | |- ( ( x x. ( P ^ n ) ) = D -> ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) <-> ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) ) ) |
| 180 | breq2 | |- ( ( x x. ( P ^ n ) ) = D -> ( ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) <-> ( P ^ ( n + 1 ) ) || D ) ) |
|
| 181 | 179 180 | imbi12d | |- ( ( x x. ( P ^ n ) ) = D -> ( ( ( ( x x. ( P ^ n ) ) || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. ( x x. ( P ^ n ) ) || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || ( x x. ( P ^ n ) ) ) <-> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 182 | 175 181 | syl5ibcom | |- ( ( ( n e. NN /\ ( P e. Prime /\ k e. ZZ ) ) /\ x e. ZZ ) -> ( ( x x. ( P ^ n ) ) = D -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 183 | 182 | rexlimdva | |- ( ( n e. NN /\ ( P e. Prime /\ k e. ZZ ) ) -> ( E. x e. ZZ ( x x. ( P ^ n ) ) = D -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 184 | 183 | adantlr | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( E. x e. ZZ ( x x. ( P ^ n ) ) = D -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 185 | 141 184 | sylbid | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( P ^ n ) || D -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 186 | 185 | com23 | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( ( P ^ n ) || D -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 187 | 186 | a2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 188 | 71 | ad2antll | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> k e. CC ) |
| 189 | 124 | zcnd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> P e. CC ) |
| 190 | 138 | zcnd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) e. CC ) |
| 191 | 188 189 190 | mulassd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ n ) ) = ( k x. ( P x. ( P ^ n ) ) ) ) |
| 192 | 189 190 | mulcomd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P x. ( P ^ n ) ) = ( ( P ^ n ) x. P ) ) |
| 193 | 189 136 | expp1d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n + 1 ) ) = ( ( P ^ n ) x. P ) ) |
| 194 | 192 193 | eqtr4d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P x. ( P ^ n ) ) = ( P ^ ( n + 1 ) ) ) |
| 195 | 194 | oveq2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P x. ( P ^ n ) ) ) = ( k x. ( P ^ ( n + 1 ) ) ) ) |
| 196 | 191 195 | eqtrd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ n ) ) = ( k x. ( P ^ ( n + 1 ) ) ) ) |
| 197 | 196 | breq2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( D || ( ( k x. P ) x. ( P ^ n ) ) <-> D || ( k x. ( P ^ ( n + 1 ) ) ) ) ) |
| 198 | nnm1nn0 | |- ( n e. NN -> ( n - 1 ) e. NN0 ) |
|
| 199 | 198 | ad2antrr | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( n - 1 ) e. NN0 ) |
| 200 | zexpcl | |- ( ( P e. ZZ /\ ( n - 1 ) e. NN0 ) -> ( P ^ ( n - 1 ) ) e. ZZ ) |
|
| 201 | 124 199 200 | syl2anc | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n - 1 ) ) e. ZZ ) |
| 202 | 201 | zcnd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( n - 1 ) ) e. CC ) |
| 203 | 188 189 202 | mulassd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) = ( k x. ( P x. ( P ^ ( n - 1 ) ) ) ) ) |
| 204 | 189 202 | mulcomd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P x. ( P ^ ( n - 1 ) ) ) = ( ( P ^ ( n - 1 ) ) x. P ) ) |
| 205 | simpll | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> n e. NN ) |
|
| 206 | expm1t | |- ( ( P e. CC /\ n e. NN ) -> ( P ^ n ) = ( ( P ^ ( n - 1 ) ) x. P ) ) |
|
| 207 | 189 205 206 | syl2anc | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ n ) = ( ( P ^ ( n - 1 ) ) x. P ) ) |
| 208 | 204 207 | eqtr4d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P x. ( P ^ ( n - 1 ) ) ) = ( P ^ n ) ) |
| 209 | 208 | oveq2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P x. ( P ^ ( n - 1 ) ) ) ) = ( k x. ( P ^ n ) ) ) |
| 210 | 203 209 | eqtrd | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) = ( k x. ( P ^ n ) ) ) |
| 211 | 210 | breq2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) <-> D || ( k x. ( P ^ n ) ) ) ) |
| 212 | 211 | notbid | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) <-> -. D || ( k x. ( P ^ n ) ) ) ) |
| 213 | 197 212 | anbi12d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) ) ) |
| 214 | 213 | imbi1d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) <-> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ n ) || D ) ) ) |
| 215 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 216 | 215 | ad2antrr | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> n e. CC ) |
| 217 | ax-1cn | |- 1 e. CC |
|
| 218 | pncan | |- ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) |
|
| 219 | 216 217 218 | sylancl | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( n + 1 ) - 1 ) = n ) |
| 220 | 219 | oveq2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( P ^ ( ( n + 1 ) - 1 ) ) = ( P ^ n ) ) |
| 221 | 220 | oveq2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) = ( k x. ( P ^ n ) ) ) |
| 222 | 221 | breq2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) <-> D || ( k x. ( P ^ n ) ) ) ) |
| 223 | 222 | notbid | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) <-> -. D || ( k x. ( P ^ n ) ) ) ) |
| 224 | 223 | anbi2d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) <-> ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) ) ) |
| 225 | 224 | imbi1d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) <-> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ n ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 226 | 187 214 225 | 3imtr4d | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( ( ( D || ( ( k x. P ) x. ( P ^ n ) ) /\ -. D || ( ( k x. P ) x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 227 | 134 226 | syld | |- ( ( ( n e. NN /\ D e. ZZ ) /\ ( P e. Prime /\ k e. ZZ ) ) -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 228 | 227 | anassrs | |- ( ( ( ( n e. NN /\ D e. ZZ ) /\ P e. Prime ) /\ k e. ZZ ) -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 229 | 228 | ralrimdva | |- ( ( ( n e. NN /\ D e. ZZ ) /\ P e. Prime ) -> ( A. x e. ZZ ( ( D || ( x x. ( P ^ n ) ) /\ -. D || ( x x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 230 | 122 229 | biimtrid | |- ( ( ( n e. NN /\ D e. ZZ ) /\ P e. Prime ) -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) |
| 231 | 230 | expl | |- ( n e. NN -> ( ( D e. ZZ /\ P e. Prime ) -> ( A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) ) |
| 232 | 231 | a2d | |- ( n e. NN -> ( ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ n ) ) /\ -. D || ( k x. ( P ^ ( n - 1 ) ) ) ) -> ( P ^ n ) || D ) ) -> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ ( n + 1 ) ) ) /\ -. D || ( k x. ( P ^ ( ( n + 1 ) - 1 ) ) ) ) -> ( P ^ ( n + 1 ) ) || D ) ) ) ) |
| 233 | 20 33 46 59 114 232 | nnind | |- ( N e. NN -> ( ( D e. ZZ /\ P e. Prime ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) |
| 234 | 233 | com12 | |- ( ( D e. ZZ /\ P e. Prime ) -> ( N e. NN -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) ) |
| 235 | 234 | impr | |- ( ( D e. ZZ /\ ( P e. Prime /\ N e. NN ) ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) |
| 236 | 235 | adantll | |- ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) ) -> A. k e. ZZ ( ( D || ( k x. ( P ^ N ) ) /\ -. D || ( k x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) |
| 237 | simpll | |- ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) ) -> K e. ZZ ) |
|
| 238 | 7 236 237 | rspcdva | |- ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) ) -> ( ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) -> ( P ^ N ) || D ) ) |
| 239 | 238 | 3impia | |- ( ( ( K e. ZZ /\ D e. ZZ ) /\ ( P e. Prime /\ N e. NN ) /\ ( D || ( K x. ( P ^ N ) ) /\ -. D || ( K x. ( P ^ ( N - 1 ) ) ) ) ) -> ( P ^ N ) || D ) |