This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prm23ge5 | |- ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 | |- ( ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
|
| 2 | 3ioran | |- ( -. ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) <-> ( -. P = 2 /\ -. P = 3 /\ -. P e. ( ZZ>= ` 5 ) ) ) |
|
| 3 | 3ianor | |- ( -. ( 5 e. ZZ /\ P e. ZZ /\ 5 <_ P ) <-> ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) ) |
|
| 4 | eluz2 | |- ( P e. ( ZZ>= ` 5 ) <-> ( 5 e. ZZ /\ P e. ZZ /\ 5 <_ P ) ) |
|
| 5 | 3 4 | xchnxbir | |- ( -. P e. ( ZZ>= ` 5 ) <-> ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) ) |
| 6 | 5nn | |- 5 e. NN |
|
| 7 | 6 | nnzi | |- 5 e. ZZ |
| 8 | 7 | pm2.24i | |- ( -. 5 e. ZZ -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
| 9 | pm2.24 | |- ( P e. ZZ -> ( -. P e. ZZ -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
|
| 10 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 11 | 9 10 | syl11 | |- ( -. P e. ZZ -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
| 12 | 11 | a1d | |- ( -. P e. ZZ -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
| 13 | 10 | zred | |- ( P e. Prime -> P e. RR ) |
| 14 | 5re | |- 5 e. RR |
|
| 15 | 14 | a1i | |- ( P e. Prime -> 5 e. RR ) |
| 16 | 13 15 | ltnled | |- ( P e. Prime -> ( P < 5 <-> -. 5 <_ P ) ) |
| 17 | prm23lt5 | |- ( ( P e. Prime /\ P < 5 ) -> ( P = 2 \/ P = 3 ) ) |
|
| 18 | ioran | |- ( -. ( P = 2 \/ P = 3 ) <-> ( -. P = 2 /\ -. P = 3 ) ) |
|
| 19 | pm2.24 | |- ( ( P = 2 \/ P = 3 ) -> ( -. ( P = 2 \/ P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
|
| 20 | 18 19 | biimtrrid | |- ( ( P = 2 \/ P = 3 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
| 21 | 17 20 | syl | |- ( ( P e. Prime /\ P < 5 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
| 22 | 21 | ex | |- ( P e. Prime -> ( P < 5 -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
| 23 | 16 22 | sylbird | |- ( P e. Prime -> ( -. 5 <_ P -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
| 24 | 23 | com3l | |- ( -. 5 <_ P -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
| 25 | 8 12 24 | 3jaoi | |- ( ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
| 26 | 5 25 | sylbi | |- ( -. P e. ( ZZ>= ` 5 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
| 27 | 26 | com12 | |- ( ( -. P = 2 /\ -. P = 3 ) -> ( -. P e. ( ZZ>= ` 5 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
| 28 | 27 | 3impia | |- ( ( -. P = 2 /\ -. P = 3 /\ -. P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
| 29 | 2 28 | sylbi | |- ( -. ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
| 30 | 1 29 | pm2.61i | |- ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) |