This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017) (Proof shortened by AV, 7-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz0to4untppr | |- ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 2 | 0z | |- 0 e. ZZ |
|
| 3 | 3z | |- 3 e. ZZ |
|
| 4 | 0re | |- 0 e. RR |
|
| 5 | 3re | |- 3 e. RR |
|
| 6 | 3pos | |- 0 < 3 |
|
| 7 | 4 5 6 | ltleii | |- 0 <_ 3 |
| 8 | eluz2 | |- ( 3 e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ 3 e. ZZ /\ 0 <_ 3 ) ) |
|
| 9 | 2 3 7 8 | mpbir3an | |- 3 e. ( ZZ>= ` 0 ) |
| 10 | 1 9 | eqeltri | |- ( 2 + 1 ) e. ( ZZ>= ` 0 ) |
| 11 | 2z | |- 2 e. ZZ |
|
| 12 | 4z | |- 4 e. ZZ |
|
| 13 | 2re | |- 2 e. RR |
|
| 14 | 4re | |- 4 e. RR |
|
| 15 | 2lt4 | |- 2 < 4 |
|
| 16 | 13 14 15 | ltleii | |- 2 <_ 4 |
| 17 | eluz2 | |- ( 4 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 4 e. ZZ /\ 2 <_ 4 ) ) |
|
| 18 | 11 12 16 17 | mpbir3an | |- 4 e. ( ZZ>= ` 2 ) |
| 19 | fzsplit2 | |- ( ( ( 2 + 1 ) e. ( ZZ>= ` 0 ) /\ 4 e. ( ZZ>= ` 2 ) ) -> ( 0 ... 4 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) ) |
|
| 20 | 10 18 19 | mp2an | |- ( 0 ... 4 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) |
| 21 | fz0tp | |- ( 0 ... 2 ) = { 0 , 1 , 2 } |
|
| 22 | 1 | oveq1i | |- ( ( 2 + 1 ) ... 4 ) = ( 3 ... 4 ) |
| 23 | df-4 | |- 4 = ( 3 + 1 ) |
|
| 24 | 23 | oveq2i | |- ( 3 ... 4 ) = ( 3 ... ( 3 + 1 ) ) |
| 25 | fzpr | |- ( 3 e. ZZ -> ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } ) |
|
| 26 | 3 25 | ax-mp | |- ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } |
| 27 | 3p1e4 | |- ( 3 + 1 ) = 4 |
|
| 28 | 27 | preq2i | |- { 3 , ( 3 + 1 ) } = { 3 , 4 } |
| 29 | 24 26 28 | 3eqtri | |- ( 3 ... 4 ) = { 3 , 4 } |
| 30 | 22 29 | eqtri | |- ( ( 2 + 1 ) ... 4 ) = { 3 , 4 } |
| 31 | 21 30 | uneq12i | |- ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
| 32 | 20 31 | eqtri | |- ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |