This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsgrpd.y | |- Y = ( S Xs_ R ) |
|
| prdsgrpd.i | |- ( ph -> I e. W ) |
||
| prdsgrpd.s | |- ( ph -> S e. V ) |
||
| prdsgrpd.r | |- ( ph -> R : I --> Grp ) |
||
| prdsinvgd.b | |- B = ( Base ` Y ) |
||
| prdsinvgd.n | |- N = ( invg ` Y ) |
||
| prdsinvgd.x | |- ( ph -> X e. B ) |
||
| Assertion | prdsinvgd | |- ( ph -> ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsgrpd.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsgrpd.i | |- ( ph -> I e. W ) |
|
| 3 | prdsgrpd.s | |- ( ph -> S e. V ) |
|
| 4 | prdsgrpd.r | |- ( ph -> R : I --> Grp ) |
|
| 5 | prdsinvgd.b | |- B = ( Base ` Y ) |
|
| 6 | prdsinvgd.n | |- N = ( invg ` Y ) |
|
| 7 | prdsinvgd.x | |- ( ph -> X e. B ) |
|
| 8 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 9 | 3 | elexd | |- ( ph -> S e. _V ) |
| 10 | 2 | elexd | |- ( ph -> I e. _V ) |
| 11 | eqid | |- ( 0g o. R ) = ( 0g o. R ) |
|
| 12 | eqid | |- ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) |
|
| 13 | 1 5 8 9 10 4 7 11 12 | prdsinvlem | |- ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B /\ ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g o. R ) ) ) |
| 14 | 13 | simprd | |- ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g o. R ) ) |
| 15 | grpmnd | |- ( a e. Grp -> a e. Mnd ) |
|
| 16 | 15 | ssriv | |- Grp C_ Mnd |
| 17 | fss | |- ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) |
|
| 18 | 4 16 17 | sylancl | |- ( ph -> R : I --> Mnd ) |
| 19 | 1 2 3 18 | prds0g | |- ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) |
| 20 | 14 19 | eqtrd | |- ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) |
| 21 | 1 2 3 4 | prdsgrpd | |- ( ph -> Y e. Grp ) |
| 22 | 13 | simpld | |- ( ph -> ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B ) |
| 23 | eqid | |- ( 0g ` Y ) = ( 0g ` Y ) |
|
| 24 | 5 8 23 6 | grpinvid2 | |- ( ( Y e. Grp /\ X e. B /\ ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B ) -> ( ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) <-> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) ) |
| 25 | 21 7 22 24 | syl3anc | |- ( ph -> ( ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) <-> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) ) |
| 26 | 20 25 | mpbird | |- ( ph -> ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ) |