This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pocklington's theorem, which gives a sufficient criterion for a number N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pockthi.p | |- P e. Prime |
|
| pockthi.g | |- G e. NN |
||
| pockthi.m | |- M = ( G x. P ) |
||
| pockthi.n | |- N = ( M + 1 ) |
||
| pockthi.d | |- D e. NN |
||
| pockthi.e | |- E e. NN |
||
| pockthi.a | |- A e. NN |
||
| pockthi.fac | |- M = ( D x. ( P ^ E ) ) |
||
| pockthi.gt | |- D < ( P ^ E ) |
||
| pockthi.mod | |- ( ( A ^ M ) mod N ) = ( 1 mod N ) |
||
| pockthi.gcd | |- ( ( ( A ^ G ) - 1 ) gcd N ) = 1 |
||
| Assertion | pockthi | |- N e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pockthi.p | |- P e. Prime |
|
| 2 | pockthi.g | |- G e. NN |
|
| 3 | pockthi.m | |- M = ( G x. P ) |
|
| 4 | pockthi.n | |- N = ( M + 1 ) |
|
| 5 | pockthi.d | |- D e. NN |
|
| 6 | pockthi.e | |- E e. NN |
|
| 7 | pockthi.a | |- A e. NN |
|
| 8 | pockthi.fac | |- M = ( D x. ( P ^ E ) ) |
|
| 9 | pockthi.gt | |- D < ( P ^ E ) |
|
| 10 | pockthi.mod | |- ( ( A ^ M ) mod N ) = ( 1 mod N ) |
|
| 11 | pockthi.gcd | |- ( ( ( A ^ G ) - 1 ) gcd N ) = 1 |
|
| 12 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 13 | 1 12 | ax-mp | |- P e. NN |
| 14 | 6 | nnnn0i | |- E e. NN0 |
| 15 | nnexpcl | |- ( ( P e. NN /\ E e. NN0 ) -> ( P ^ E ) e. NN ) |
|
| 16 | 13 14 15 | mp2an | |- ( P ^ E ) e. NN |
| 17 | 16 | a1i | |- ( D e. NN -> ( P ^ E ) e. NN ) |
| 18 | id | |- ( D e. NN -> D e. NN ) |
|
| 19 | 9 | a1i | |- ( D e. NN -> D < ( P ^ E ) ) |
| 20 | 5 | nncni | |- D e. CC |
| 21 | 16 | nncni | |- ( P ^ E ) e. CC |
| 22 | 20 21 | mulcomi | |- ( D x. ( P ^ E ) ) = ( ( P ^ E ) x. D ) |
| 23 | 8 22 | eqtri | |- M = ( ( P ^ E ) x. D ) |
| 24 | 23 | oveq1i | |- ( M + 1 ) = ( ( ( P ^ E ) x. D ) + 1 ) |
| 25 | 4 24 | eqtri | |- N = ( ( ( P ^ E ) x. D ) + 1 ) |
| 26 | 25 | a1i | |- ( D e. NN -> N = ( ( ( P ^ E ) x. D ) + 1 ) ) |
| 27 | prmdvdsexpb | |- ( ( x e. Prime /\ P e. Prime /\ E e. NN ) -> ( x || ( P ^ E ) <-> x = P ) ) |
|
| 28 | 1 6 27 | mp3an23 | |- ( x e. Prime -> ( x || ( P ^ E ) <-> x = P ) ) |
| 29 | 2 13 | nnmulcli | |- ( G x. P ) e. NN |
| 30 | 3 29 | eqeltri | |- M e. NN |
| 31 | 30 | nncni | |- M e. CC |
| 32 | ax-1cn | |- 1 e. CC |
|
| 33 | 31 32 4 | mvrraddi | |- ( N - 1 ) = M |
| 34 | 33 | oveq2i | |- ( A ^ ( N - 1 ) ) = ( A ^ M ) |
| 35 | 34 | oveq1i | |- ( ( A ^ ( N - 1 ) ) mod N ) = ( ( A ^ M ) mod N ) |
| 36 | peano2nn | |- ( M e. NN -> ( M + 1 ) e. NN ) |
|
| 37 | 30 36 | ax-mp | |- ( M + 1 ) e. NN |
| 38 | 4 37 | eqeltri | |- N e. NN |
| 39 | 38 | nnrei | |- N e. RR |
| 40 | 30 | nngt0i | |- 0 < M |
| 41 | 30 | nnrei | |- M e. RR |
| 42 | 1re | |- 1 e. RR |
|
| 43 | ltaddpos2 | |- ( ( M e. RR /\ 1 e. RR ) -> ( 0 < M <-> 1 < ( M + 1 ) ) ) |
|
| 44 | 41 42 43 | mp2an | |- ( 0 < M <-> 1 < ( M + 1 ) ) |
| 45 | 40 44 | mpbi | |- 1 < ( M + 1 ) |
| 46 | 45 4 | breqtrri | |- 1 < N |
| 47 | 1mod | |- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
|
| 48 | 39 46 47 | mp2an | |- ( 1 mod N ) = 1 |
| 49 | 10 48 | eqtri | |- ( ( A ^ M ) mod N ) = 1 |
| 50 | 35 49 | eqtri | |- ( ( A ^ ( N - 1 ) ) mod N ) = 1 |
| 51 | oveq2 | |- ( x = P -> ( ( N - 1 ) / x ) = ( ( N - 1 ) / P ) ) |
|
| 52 | 2 | nncni | |- G e. CC |
| 53 | 13 | nncni | |- P e. CC |
| 54 | 52 53 | mulcomi | |- ( G x. P ) = ( P x. G ) |
| 55 | 33 3 54 | 3eqtrri | |- ( P x. G ) = ( N - 1 ) |
| 56 | 38 | nncni | |- N e. CC |
| 57 | 56 32 | subcli | |- ( N - 1 ) e. CC |
| 58 | 13 | nnne0i | |- P =/= 0 |
| 59 | 57 53 52 58 | divmuli | |- ( ( ( N - 1 ) / P ) = G <-> ( P x. G ) = ( N - 1 ) ) |
| 60 | 55 59 | mpbir | |- ( ( N - 1 ) / P ) = G |
| 61 | 51 60 | eqtrdi | |- ( x = P -> ( ( N - 1 ) / x ) = G ) |
| 62 | 61 | oveq2d | |- ( x = P -> ( A ^ ( ( N - 1 ) / x ) ) = ( A ^ G ) ) |
| 63 | 62 | oveq1d | |- ( x = P -> ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) = ( ( A ^ G ) - 1 ) ) |
| 64 | 63 | oveq1d | |- ( x = P -> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = ( ( ( A ^ G ) - 1 ) gcd N ) ) |
| 65 | 64 11 | eqtrdi | |- ( x = P -> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) |
| 66 | 7 | nnzi | |- A e. ZZ |
| 67 | oveq1 | |- ( y = A -> ( y ^ ( N - 1 ) ) = ( A ^ ( N - 1 ) ) ) |
|
| 68 | 67 | oveq1d | |- ( y = A -> ( ( y ^ ( N - 1 ) ) mod N ) = ( ( A ^ ( N - 1 ) ) mod N ) ) |
| 69 | 68 | eqeq1d | |- ( y = A -> ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 <-> ( ( A ^ ( N - 1 ) ) mod N ) = 1 ) ) |
| 70 | oveq1 | |- ( y = A -> ( y ^ ( ( N - 1 ) / x ) ) = ( A ^ ( ( N - 1 ) / x ) ) ) |
|
| 71 | 70 | oveq1d | |- ( y = A -> ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) = ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) ) |
| 72 | 71 | oveq1d | |- ( y = A -> ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) ) |
| 73 | 72 | eqeq1d | |- ( y = A -> ( ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 <-> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 74 | 69 73 | anbi12d | |- ( y = A -> ( ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) <-> ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 75 | 74 | rspcev | |- ( ( A e. ZZ /\ ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 76 | 66 75 | mpan | |- ( ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 77 | 50 65 76 | sylancr | |- ( x = P -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 78 | 28 77 | biimtrdi | |- ( x e. Prime -> ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 79 | 78 | rgen | |- A. x e. Prime ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 80 | 79 | a1i | |- ( D e. NN -> A. x e. Prime ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 81 | 17 18 19 26 80 | pockthg | |- ( D e. NN -> N e. Prime ) |
| 82 | 5 81 | ax-mp | |- N e. Prime |