This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012) (Revised by Mario Carneiro, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsexpb | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | |- ( Q e. Prime -> Q e. ZZ ) |
|
| 2 | prmdvdsexp | |- ( ( P e. Prime /\ Q e. ZZ /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P || Q ) ) |
|
| 3 | 1 2 | syl3an2 | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P || Q ) ) |
| 4 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 5 | dvdsprm | |- ( ( P e. ( ZZ>= ` 2 ) /\ Q e. Prime ) -> ( P || Q <-> P = Q ) ) |
|
| 6 | 4 5 | sylan | |- ( ( P e. Prime /\ Q e. Prime ) -> ( P || Q <-> P = Q ) ) |
| 7 | 6 | 3adant3 | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || Q <-> P = Q ) ) |
| 8 | 3 7 | bitrd | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |