This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The generalized Pocklington's theorem. If N - 1 = A x. B where B < A , then N is prime if and only if for every prime factor p of A , there is an x such that x ^ ( N - 1 ) = 1 ( mod N ) and gcd ( x ^ ( ( N - 1 ) / p ) - 1 , N ) = 1 . (Contributed by Mario Carneiro, 2-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pockthg.1 | |- ( ph -> A e. NN ) |
|
| pockthg.2 | |- ( ph -> B e. NN ) |
||
| pockthg.3 | |- ( ph -> B < A ) |
||
| pockthg.4 | |- ( ph -> N = ( ( A x. B ) + 1 ) ) |
||
| pockthg.5 | |- ( ph -> A. p e. Prime ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) |
||
| Assertion | pockthg | |- ( ph -> N e. Prime ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pockthg.1 | |- ( ph -> A e. NN ) |
|
| 2 | pockthg.2 | |- ( ph -> B e. NN ) |
|
| 3 | pockthg.3 | |- ( ph -> B < A ) |
|
| 4 | pockthg.4 | |- ( ph -> N = ( ( A x. B ) + 1 ) ) |
|
| 5 | pockthg.5 | |- ( ph -> A. p e. Prime ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) |
|
| 6 | 1 2 | nnmulcld | |- ( ph -> ( A x. B ) e. NN ) |
| 7 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 8 | 6 7 | eleqtrdi | |- ( ph -> ( A x. B ) e. ( ZZ>= ` 1 ) ) |
| 9 | eluzp1p1 | |- ( ( A x. B ) e. ( ZZ>= ` 1 ) -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 11 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 12 | 11 | fveq2i | |- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
| 13 | 10 12 | eleqtrrdi | |- ( ph -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` 2 ) ) |
| 14 | 4 13 | eqeltrd | |- ( ph -> N e. ( ZZ>= ` 2 ) ) |
| 15 | eluzelre | |- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
|
| 16 | 14 15 | syl | |- ( ph -> N e. RR ) |
| 17 | 16 | adantr | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> N e. RR ) |
| 18 | 1 | nnred | |- ( ph -> A e. RR ) |
| 19 | 18 | resqcld | |- ( ph -> ( A ^ 2 ) e. RR ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A ^ 2 ) e. RR ) |
| 21 | prmnn | |- ( q e. Prime -> q e. NN ) |
|
| 22 | 21 | ad2antrl | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> q e. NN ) |
| 23 | 22 | nnred | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> q e. RR ) |
| 24 | 23 | resqcld | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( q ^ 2 ) e. RR ) |
| 25 | 2 | nnred | |- ( ph -> B e. RR ) |
| 26 | 1 | nngt0d | |- ( ph -> 0 < A ) |
| 27 | ltmul2 | |- ( ( B e. RR /\ A e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( B < A <-> ( A x. B ) < ( A x. A ) ) ) |
|
| 28 | 25 18 18 26 27 | syl112anc | |- ( ph -> ( B < A <-> ( A x. B ) < ( A x. A ) ) ) |
| 29 | 3 28 | mpbid | |- ( ph -> ( A x. B ) < ( A x. A ) ) |
| 30 | 1 1 | nnmulcld | |- ( ph -> ( A x. A ) e. NN ) |
| 31 | nnltp1le | |- ( ( ( A x. B ) e. NN /\ ( A x. A ) e. NN ) -> ( ( A x. B ) < ( A x. A ) <-> ( ( A x. B ) + 1 ) <_ ( A x. A ) ) ) |
|
| 32 | 6 30 31 | syl2anc | |- ( ph -> ( ( A x. B ) < ( A x. A ) <-> ( ( A x. B ) + 1 ) <_ ( A x. A ) ) ) |
| 33 | 29 32 | mpbid | |- ( ph -> ( ( A x. B ) + 1 ) <_ ( A x. A ) ) |
| 34 | 1 | nncnd | |- ( ph -> A e. CC ) |
| 35 | 34 | sqvald | |- ( ph -> ( A ^ 2 ) = ( A x. A ) ) |
| 36 | 33 4 35 | 3brtr4d | |- ( ph -> N <_ ( A ^ 2 ) ) |
| 37 | 36 | adantr | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> N <_ ( A ^ 2 ) ) |
| 38 | 5 | adantr | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A. p e. Prime ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 39 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 40 | 39 | ad2antrl | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> p e. NN ) |
| 41 | 40 | nncnd | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> p e. CC ) |
| 42 | 41 | exp1d | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( p ^ 1 ) = p ) |
| 43 | nnge1 | |- ( ( p pCnt A ) e. NN -> 1 <_ ( p pCnt A ) ) |
|
| 44 | 43 | ad2antll | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> 1 <_ ( p pCnt A ) ) |
| 45 | simprl | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> p e. Prime ) |
|
| 46 | 1 | nnzd | |- ( ph -> A e. ZZ ) |
| 47 | 46 | ad2antrr | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> A e. ZZ ) |
| 48 | 1nn0 | |- 1 e. NN0 |
|
| 49 | 48 | a1i | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> 1 e. NN0 ) |
| 50 | pcdvdsb | |- ( ( p e. Prime /\ A e. ZZ /\ 1 e. NN0 ) -> ( 1 <_ ( p pCnt A ) <-> ( p ^ 1 ) || A ) ) |
|
| 51 | 45 47 49 50 | syl3anc | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( 1 <_ ( p pCnt A ) <-> ( p ^ 1 ) || A ) ) |
| 52 | 44 51 | mpbid | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( p ^ 1 ) || A ) |
| 53 | 42 52 | eqbrtrrd | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> p || A ) |
| 54 | simpl1 | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ph ) |
|
| 55 | 54 1 | syl | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> A e. NN ) |
| 56 | 54 2 | syl | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> B e. NN ) |
| 57 | 54 3 | syl | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> B < A ) |
| 58 | 54 4 | syl | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> N = ( ( A x. B ) + 1 ) ) |
| 59 | simpl2l | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> q e. Prime ) |
|
| 60 | simpl2r | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> q || N ) |
|
| 61 | simpl3l | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> p e. Prime ) |
|
| 62 | simpl3r | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ( p pCnt A ) e. NN ) |
|
| 63 | simprl | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> x e. ZZ ) |
|
| 64 | simprrl | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ( ( x ^ ( N - 1 ) ) mod N ) = 1 ) |
|
| 65 | simprrr | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) |
|
| 66 | 55 56 57 58 59 60 61 62 63 64 65 | pockthlem | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) |
| 67 | 66 | rexlimdvaa | |- ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 68 | 67 | 3expa | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 69 | 53 68 | embantd | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 70 | 69 | expr | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p pCnt A ) e. NN -> ( ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) ) |
| 71 | id | |- ( p e. Prime -> p e. Prime ) |
|
| 72 | prmuz2 | |- ( q e. Prime -> q e. ( ZZ>= ` 2 ) ) |
|
| 73 | uz2m1nn | |- ( q e. ( ZZ>= ` 2 ) -> ( q - 1 ) e. NN ) |
|
| 74 | 72 73 | syl | |- ( q e. Prime -> ( q - 1 ) e. NN ) |
| 75 | 74 | ad2antrl | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( q - 1 ) e. NN ) |
| 76 | pccl | |- ( ( p e. Prime /\ ( q - 1 ) e. NN ) -> ( p pCnt ( q - 1 ) ) e. NN0 ) |
|
| 77 | 71 75 76 | syl2anr | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( p pCnt ( q - 1 ) ) e. NN0 ) |
| 78 | 77 | nn0ge0d | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> 0 <_ ( p pCnt ( q - 1 ) ) ) |
| 79 | breq1 | |- ( ( p pCnt A ) = 0 -> ( ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) <-> 0 <_ ( p pCnt ( q - 1 ) ) ) ) |
|
| 80 | 78 79 | syl5ibrcom | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p pCnt A ) = 0 -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 81 | 80 | a1dd | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p pCnt A ) = 0 -> ( ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) ) |
| 82 | simpr | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> p e. Prime ) |
|
| 83 | 1 | ad2antrr | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> A e. NN ) |
| 84 | 82 83 | pccld | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
| 85 | elnn0 | |- ( ( p pCnt A ) e. NN0 <-> ( ( p pCnt A ) e. NN \/ ( p pCnt A ) = 0 ) ) |
|
| 86 | 84 85 | sylib | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p pCnt A ) e. NN \/ ( p pCnt A ) = 0 ) ) |
| 87 | 70 81 86 | mpjaod | |- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 88 | 87 | ralimdva | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A. p e. Prime ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 89 | 38 88 | mpd | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) |
| 90 | 75 | nnzd | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( q - 1 ) e. ZZ ) |
| 91 | pc2dvds | |- ( ( A e. ZZ /\ ( q - 1 ) e. ZZ ) -> ( A || ( q - 1 ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
|
| 92 | 46 90 91 | syl2an2r | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A || ( q - 1 ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 93 | 89 92 | mpbird | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A || ( q - 1 ) ) |
| 94 | dvdsle | |- ( ( A e. ZZ /\ ( q - 1 ) e. NN ) -> ( A || ( q - 1 ) -> A <_ ( q - 1 ) ) ) |
|
| 95 | 46 75 94 | syl2an2r | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A || ( q - 1 ) -> A <_ ( q - 1 ) ) ) |
| 96 | 93 95 | mpd | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A <_ ( q - 1 ) ) |
| 97 | 1 | nnnn0d | |- ( ph -> A e. NN0 ) |
| 98 | 22 | nnnn0d | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> q e. NN0 ) |
| 99 | nn0ltlem1 | |- ( ( A e. NN0 /\ q e. NN0 ) -> ( A < q <-> A <_ ( q - 1 ) ) ) |
|
| 100 | 97 98 99 | syl2an2r | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A < q <-> A <_ ( q - 1 ) ) ) |
| 101 | 96 100 | mpbird | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A < q ) |
| 102 | 18 | adantr | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A e. RR ) |
| 103 | 97 | nn0ge0d | |- ( ph -> 0 <_ A ) |
| 104 | 103 | adantr | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> 0 <_ A ) |
| 105 | 98 | nn0ge0d | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> 0 <_ q ) |
| 106 | 102 23 104 105 | lt2sqd | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A < q <-> ( A ^ 2 ) < ( q ^ 2 ) ) ) |
| 107 | 101 106 | mpbid | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A ^ 2 ) < ( q ^ 2 ) ) |
| 108 | 17 20 24 37 107 | lelttrd | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> N < ( q ^ 2 ) ) |
| 109 | 17 24 | ltnled | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( N < ( q ^ 2 ) <-> -. ( q ^ 2 ) <_ N ) ) |
| 110 | 108 109 | mpbid | |- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> -. ( q ^ 2 ) <_ N ) |
| 111 | 110 | expr | |- ( ( ph /\ q e. Prime ) -> ( q || N -> -. ( q ^ 2 ) <_ N ) ) |
| 112 | 111 | con2d | |- ( ( ph /\ q e. Prime ) -> ( ( q ^ 2 ) <_ N -> -. q || N ) ) |
| 113 | 112 | ralrimiva | |- ( ph -> A. q e. Prime ( ( q ^ 2 ) <_ N -> -. q || N ) ) |
| 114 | isprm5 | |- ( N e. Prime <-> ( N e. ( ZZ>= ` 2 ) /\ A. q e. Prime ( ( q ^ 2 ) <_ N -> -. q || N ) ) ) |
|
| 115 | 14 113 114 | sylanbrc | |- ( ph -> N e. Prime ) |