This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1mod | |- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 | |- 0 < 1 |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | 1re | |- 1 e. RR |
|
| 4 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( 0 < 1 /\ 1 < N ) -> 0 < N ) ) |
|
| 5 | 2 3 4 | mp3an12 | |- ( N e. RR -> ( ( 0 < 1 /\ 1 < N ) -> 0 < N ) ) |
| 6 | 1 5 | mpani | |- ( N e. RR -> ( 1 < N -> 0 < N ) ) |
| 7 | 6 | imdistani | |- ( ( N e. RR /\ 1 < N ) -> ( N e. RR /\ 0 < N ) ) |
| 8 | elrp | |- ( N e. RR+ <-> ( N e. RR /\ 0 < N ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( N e. RR /\ 1 < N ) -> N e. RR+ ) |
| 10 | 9 3 | jctil | |- ( ( N e. RR /\ 1 < N ) -> ( 1 e. RR /\ N e. RR+ ) ) |
| 11 | simpr | |- ( ( N e. RR /\ 1 < N ) -> 1 < N ) |
|
| 12 | 0le1 | |- 0 <_ 1 |
|
| 13 | 11 12 | jctil | |- ( ( N e. RR /\ 1 < N ) -> ( 0 <_ 1 /\ 1 < N ) ) |
| 14 | modid | |- ( ( ( 1 e. RR /\ N e. RR+ ) /\ ( 0 <_ 1 /\ 1 < N ) ) -> ( 1 mod N ) = 1 ) |
|
| 15 | 10 13 14 | syl2anc | |- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |