This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pocklington's theorem, which gives a sufficient criterion for a number N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pockthi.p | ⊢ 𝑃 ∈ ℙ | |
| pockthi.g | ⊢ 𝐺 ∈ ℕ | ||
| pockthi.m | ⊢ 𝑀 = ( 𝐺 · 𝑃 ) | ||
| pockthi.n | ⊢ 𝑁 = ( 𝑀 + 1 ) | ||
| pockthi.d | ⊢ 𝐷 ∈ ℕ | ||
| pockthi.e | ⊢ 𝐸 ∈ ℕ | ||
| pockthi.a | ⊢ 𝐴 ∈ ℕ | ||
| pockthi.fac | ⊢ 𝑀 = ( 𝐷 · ( 𝑃 ↑ 𝐸 ) ) | ||
| pockthi.gt | ⊢ 𝐷 < ( 𝑃 ↑ 𝐸 ) | ||
| pockthi.mod | ⊢ ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) = ( 1 mod 𝑁 ) | ||
| pockthi.gcd | ⊢ ( ( ( 𝐴 ↑ 𝐺 ) − 1 ) gcd 𝑁 ) = 1 | ||
| Assertion | pockthi | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pockthi.p | ⊢ 𝑃 ∈ ℙ | |
| 2 | pockthi.g | ⊢ 𝐺 ∈ ℕ | |
| 3 | pockthi.m | ⊢ 𝑀 = ( 𝐺 · 𝑃 ) | |
| 4 | pockthi.n | ⊢ 𝑁 = ( 𝑀 + 1 ) | |
| 5 | pockthi.d | ⊢ 𝐷 ∈ ℕ | |
| 6 | pockthi.e | ⊢ 𝐸 ∈ ℕ | |
| 7 | pockthi.a | ⊢ 𝐴 ∈ ℕ | |
| 8 | pockthi.fac | ⊢ 𝑀 = ( 𝐷 · ( 𝑃 ↑ 𝐸 ) ) | |
| 9 | pockthi.gt | ⊢ 𝐷 < ( 𝑃 ↑ 𝐸 ) | |
| 10 | pockthi.mod | ⊢ ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) = ( 1 mod 𝑁 ) | |
| 11 | pockthi.gcd | ⊢ ( ( ( 𝐴 ↑ 𝐺 ) − 1 ) gcd 𝑁 ) = 1 | |
| 12 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 13 | 1 12 | ax-mp | ⊢ 𝑃 ∈ ℕ |
| 14 | 6 | nnnn0i | ⊢ 𝐸 ∈ ℕ0 |
| 15 | nnexpcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐸 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐸 ) ∈ ℕ ) | |
| 16 | 13 14 15 | mp2an | ⊢ ( 𝑃 ↑ 𝐸 ) ∈ ℕ |
| 17 | 16 | a1i | ⊢ ( 𝐷 ∈ ℕ → ( 𝑃 ↑ 𝐸 ) ∈ ℕ ) |
| 18 | id | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℕ ) | |
| 19 | 9 | a1i | ⊢ ( 𝐷 ∈ ℕ → 𝐷 < ( 𝑃 ↑ 𝐸 ) ) |
| 20 | 5 | nncni | ⊢ 𝐷 ∈ ℂ |
| 21 | 16 | nncni | ⊢ ( 𝑃 ↑ 𝐸 ) ∈ ℂ |
| 22 | 20 21 | mulcomi | ⊢ ( 𝐷 · ( 𝑃 ↑ 𝐸 ) ) = ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) |
| 23 | 8 22 | eqtri | ⊢ 𝑀 = ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) |
| 24 | 23 | oveq1i | ⊢ ( 𝑀 + 1 ) = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) |
| 25 | 4 24 | eqtri | ⊢ 𝑁 = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) |
| 26 | 25 | a1i | ⊢ ( 𝐷 ∈ ℕ → 𝑁 = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) ) |
| 27 | prmdvdsexpb | ⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ ) → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) ↔ 𝑥 = 𝑃 ) ) | |
| 28 | 1 6 27 | mp3an23 | ⊢ ( 𝑥 ∈ ℙ → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) ↔ 𝑥 = 𝑃 ) ) |
| 29 | 2 13 | nnmulcli | ⊢ ( 𝐺 · 𝑃 ) ∈ ℕ |
| 30 | 3 29 | eqeltri | ⊢ 𝑀 ∈ ℕ |
| 31 | 30 | nncni | ⊢ 𝑀 ∈ ℂ |
| 32 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 33 | 31 32 4 | mvrraddi | ⊢ ( 𝑁 − 1 ) = 𝑀 |
| 34 | 33 | oveq2i | ⊢ ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( 𝐴 ↑ 𝑀 ) |
| 35 | 34 | oveq1i | ⊢ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) |
| 36 | peano2nn | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ ) | |
| 37 | 30 36 | ax-mp | ⊢ ( 𝑀 + 1 ) ∈ ℕ |
| 38 | 4 37 | eqeltri | ⊢ 𝑁 ∈ ℕ |
| 39 | 38 | nnrei | ⊢ 𝑁 ∈ ℝ |
| 40 | 30 | nngt0i | ⊢ 0 < 𝑀 |
| 41 | 30 | nnrei | ⊢ 𝑀 ∈ ℝ |
| 42 | 1re | ⊢ 1 ∈ ℝ | |
| 43 | ltaddpos2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 < 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) ) | |
| 44 | 41 42 43 | mp2an | ⊢ ( 0 < 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) |
| 45 | 40 44 | mpbi | ⊢ 1 < ( 𝑀 + 1 ) |
| 46 | 45 4 | breqtrri | ⊢ 1 < 𝑁 |
| 47 | 1mod | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) | |
| 48 | 39 46 47 | mp2an | ⊢ ( 1 mod 𝑁 ) = 1 |
| 49 | 10 48 | eqtri | ⊢ ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) = 1 |
| 50 | 35 49 | eqtri | ⊢ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 |
| 51 | oveq2 | ⊢ ( 𝑥 = 𝑃 → ( ( 𝑁 − 1 ) / 𝑥 ) = ( ( 𝑁 − 1 ) / 𝑃 ) ) | |
| 52 | 2 | nncni | ⊢ 𝐺 ∈ ℂ |
| 53 | 13 | nncni | ⊢ 𝑃 ∈ ℂ |
| 54 | 52 53 | mulcomi | ⊢ ( 𝐺 · 𝑃 ) = ( 𝑃 · 𝐺 ) |
| 55 | 33 3 54 | 3eqtrri | ⊢ ( 𝑃 · 𝐺 ) = ( 𝑁 − 1 ) |
| 56 | 38 | nncni | ⊢ 𝑁 ∈ ℂ |
| 57 | 56 32 | subcli | ⊢ ( 𝑁 − 1 ) ∈ ℂ |
| 58 | 13 | nnne0i | ⊢ 𝑃 ≠ 0 |
| 59 | 57 53 52 58 | divmuli | ⊢ ( ( ( 𝑁 − 1 ) / 𝑃 ) = 𝐺 ↔ ( 𝑃 · 𝐺 ) = ( 𝑁 − 1 ) ) |
| 60 | 55 59 | mpbir | ⊢ ( ( 𝑁 − 1 ) / 𝑃 ) = 𝐺 |
| 61 | 51 60 | eqtrdi | ⊢ ( 𝑥 = 𝑃 → ( ( 𝑁 − 1 ) / 𝑥 ) = 𝐺 ) |
| 62 | 61 | oveq2d | ⊢ ( 𝑥 = 𝑃 → ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) = ( 𝐴 ↑ 𝐺 ) ) |
| 63 | 62 | oveq1d | ⊢ ( 𝑥 = 𝑃 → ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) = ( ( 𝐴 ↑ 𝐺 ) − 1 ) ) |
| 64 | 63 | oveq1d | ⊢ ( 𝑥 = 𝑃 → ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = ( ( ( 𝐴 ↑ 𝐺 ) − 1 ) gcd 𝑁 ) ) |
| 65 | 64 11 | eqtrdi | ⊢ ( 𝑥 = 𝑃 → ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) |
| 66 | 7 | nnzi | ⊢ 𝐴 ∈ ℤ |
| 67 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ↑ ( 𝑁 − 1 ) ) = ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) | |
| 68 | 67 | oveq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) ) |
| 69 | 68 | eqeq1d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ↔ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ) ) |
| 70 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) = ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) ) | |
| 71 | 70 | oveq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) = ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) ) |
| 72 | 71 | oveq1d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) ) |
| 73 | 72 | eqeq1d | ⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ↔ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 74 | 69 73 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
| 75 | 74 | rspcev | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 76 | 66 75 | mpan | ⊢ ( ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 77 | 50 65 76 | sylancr | ⊢ ( 𝑥 = 𝑃 → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 78 | 28 77 | biimtrdi | ⊢ ( 𝑥 ∈ ℙ → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
| 79 | 78 | rgen | ⊢ ∀ 𝑥 ∈ ℙ ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 80 | 79 | a1i | ⊢ ( 𝐷 ∈ ℕ → ∀ 𝑥 ∈ ℙ ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
| 81 | 17 18 19 26 80 | pockthg | ⊢ ( 𝐷 ∈ ℕ → 𝑁 ∈ ℙ ) |
| 82 | 5 81 | ax-mp | ⊢ 𝑁 ∈ ℙ |