This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of negative signed real. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 2-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negexsr | |- ( A e. R. -> E. x e. R. ( A +R x ) = 0R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m1r | |- -1R e. R. |
|
| 2 | mulclsr | |- ( ( A e. R. /\ -1R e. R. ) -> ( A .R -1R ) e. R. ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. R. -> ( A .R -1R ) e. R. ) |
| 4 | pn0sr | |- ( A e. R. -> ( A +R ( A .R -1R ) ) = 0R ) |
|
| 5 | oveq2 | |- ( x = ( A .R -1R ) -> ( A +R x ) = ( A +R ( A .R -1R ) ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = ( A .R -1R ) -> ( ( A +R x ) = 0R <-> ( A +R ( A .R -1R ) ) = 0R ) ) |
| 7 | 6 | rspcev | |- ( ( ( A .R -1R ) e. R. /\ ( A +R ( A .R -1R ) ) = 0R ) -> E. x e. R. ( A +R x ) = 0R ) |
| 8 | 3 4 7 | syl2anc | |- ( A e. R. -> E. x e. R. ( A +R x ) = 0R ) |