This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1p1sr | |- ( -1R +R 1R ) = 0R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-m1r | |- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
|
| 2 | df-1r | |- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
|
| 3 | 1 2 | oveq12i | |- ( -1R +R 1R ) = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
| 4 | df-0r | |- 0R = [ <. 1P , 1P >. ] ~R |
|
| 5 | 1pr | |- 1P e. P. |
|
| 6 | addclpr | |- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
|
| 7 | 5 5 6 | mp2an | |- ( 1P +P. 1P ) e. P. |
| 8 | addsrpr | |- ( ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) /\ ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) ) -> ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R ) |
|
| 9 | 5 7 7 5 8 | mp4an | |- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R |
| 10 | addasspr | |- ( ( 1P +P. 1P ) +P. 1P ) = ( 1P +P. ( 1P +P. 1P ) ) |
|
| 11 | 10 | oveq2i | |- ( 1P +P. ( ( 1P +P. 1P ) +P. 1P ) ) = ( 1P +P. ( 1P +P. ( 1P +P. 1P ) ) ) |
| 12 | addclpr | |- ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( 1P +P. ( 1P +P. 1P ) ) e. P. ) |
|
| 13 | 5 7 12 | mp2an | |- ( 1P +P. ( 1P +P. 1P ) ) e. P. |
| 14 | addclpr | |- ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( ( 1P +P. 1P ) +P. 1P ) e. P. ) |
|
| 15 | 7 5 14 | mp2an | |- ( ( 1P +P. 1P ) +P. 1P ) e. P. |
| 16 | enreceq | |- ( ( ( 1P e. P. /\ 1P e. P. ) /\ ( ( 1P +P. ( 1P +P. 1P ) ) e. P. /\ ( ( 1P +P. 1P ) +P. 1P ) e. P. ) ) -> ( [ <. 1P , 1P >. ] ~R = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R <-> ( 1P +P. ( ( 1P +P. 1P ) +P. 1P ) ) = ( 1P +P. ( 1P +P. ( 1P +P. 1P ) ) ) ) ) |
|
| 17 | 5 5 13 15 16 | mp4an | |- ( [ <. 1P , 1P >. ] ~R = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R <-> ( 1P +P. ( ( 1P +P. 1P ) +P. 1P ) ) = ( 1P +P. ( 1P +P. ( 1P +P. 1P ) ) ) ) |
| 18 | 11 17 | mpbir | |- [ <. 1P , 1P >. ] ~R = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R |
| 19 | 9 18 | eqtr4i | |- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. 1P , 1P >. ] ~R |
| 20 | 4 19 | eqtr4i | |- 0R = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
| 21 | 3 20 | eqtr4i | |- ( -1R +R 1R ) = 0R |