This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| pmtrrn.r | |- R = ran T |
||
| Assertion | pmtrfmvdn0 | |- ( F e. R -> dom ( F \ _I ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| 2 | pmtrrn.r | |- R = ran T |
|
| 3 | 2on0 | |- 2o =/= (/) |
|
| 4 | eqid | |- dom ( F \ _I ) = dom ( F \ _I ) |
|
| 5 | 1 2 4 | pmtrfrn | |- ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) |
| 6 | 5 | simpld | |- ( F e. R -> ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) ) |
| 7 | 6 | simp3d | |- ( F e. R -> dom ( F \ _I ) ~~ 2o ) |
| 8 | enen1 | |- ( dom ( F \ _I ) ~~ 2o -> ( dom ( F \ _I ) ~~ (/) <-> 2o ~~ (/) ) ) |
|
| 9 | 7 8 | syl | |- ( F e. R -> ( dom ( F \ _I ) ~~ (/) <-> 2o ~~ (/) ) ) |
| 10 | en0 | |- ( dom ( F \ _I ) ~~ (/) <-> dom ( F \ _I ) = (/) ) |
|
| 11 | en0 | |- ( 2o ~~ (/) <-> 2o = (/) ) |
|
| 12 | 9 10 11 | 3bitr3g | |- ( F e. R -> ( dom ( F \ _I ) = (/) <-> 2o = (/) ) ) |
| 13 | 12 | necon3bid | |- ( F e. R -> ( dom ( F \ _I ) =/= (/) <-> 2o =/= (/) ) ) |
| 14 | 3 13 | mpbiri | |- ( F e. R -> dom ( F \ _I ) =/= (/) ) |