This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ply1idvr1 as of 3-Jul-2025. (Contributed by AV, 14-Aug-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1idvr1.p | |- P = ( Poly1 ` R ) |
|
| ply1idvr1.x | |- X = ( var1 ` R ) |
||
| ply1idvr1.n | |- N = ( mulGrp ` P ) |
||
| ply1idvr1.e | |- .^ = ( .g ` N ) |
||
| Assertion | ply1idvr1OLD | |- ( R e. Ring -> ( 0 .^ X ) = ( 1r ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1idvr1.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1idvr1.x | |- X = ( var1 ` R ) |
|
| 3 | ply1idvr1.n | |- N = ( mulGrp ` P ) |
|
| 4 | ply1idvr1.e | |- .^ = ( .g ` N ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 7 | 5 6 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 8 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 9 | eqid | |- ( algSc ` P ) = ( algSc ` P ) |
|
| 10 | 5 1 2 8 3 4 9 | ply1scltm | |- ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( ( 1r ` R ) ( .s ` P ) ( 0 .^ X ) ) ) |
| 11 | 7 10 | mpdan | |- ( R e. Ring -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( ( 1r ` R ) ( .s ` P ) ( 0 .^ X ) ) ) |
| 12 | 1 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 13 | 12 | fveq2d | |- ( R e. Ring -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
| 14 | 13 | oveq1d | |- ( R e. Ring -> ( ( 1r ` R ) ( .s ` P ) ( 0 .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 .^ X ) ) ) |
| 15 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 16 | 0nn0 | |- 0 e. NN0 |
|
| 17 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 18 | 1 2 3 4 17 | ply1moncl | |- ( ( R e. Ring /\ 0 e. NN0 ) -> ( 0 .^ X ) e. ( Base ` P ) ) |
| 19 | 16 18 | mpan2 | |- ( R e. Ring -> ( 0 .^ X ) e. ( Base ` P ) ) |
| 20 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 21 | eqid | |- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
|
| 22 | 17 20 8 21 | lmodvs1 | |- ( ( P e. LMod /\ ( 0 .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 .^ X ) ) = ( 0 .^ X ) ) |
| 23 | 15 19 22 | syl2anc | |- ( R e. Ring -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 .^ X ) ) = ( 0 .^ X ) ) |
| 24 | 11 14 23 | 3eqtrrd | |- ( R e. Ring -> ( 0 .^ X ) = ( ( algSc ` P ) ` ( 1r ` R ) ) ) |
| 25 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 26 | 1 9 6 25 | ply1scl1 | |- ( R e. Ring -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) ) |
| 27 | 24 26 | eqtrd | |- ( R e. Ring -> ( 0 .^ X ) = ( 1r ` P ) ) |