This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scltm.k | |- K = ( Base ` R ) |
|
| ply1scltm.p | |- P = ( Poly1 ` R ) |
||
| ply1scltm.x | |- X = ( var1 ` R ) |
||
| ply1scltm.m | |- .x. = ( .s ` P ) |
||
| ply1scltm.n | |- N = ( mulGrp ` P ) |
||
| ply1scltm.e | |- .^ = ( .g ` N ) |
||
| ply1scltm.a | |- A = ( algSc ` P ) |
||
| Assertion | ply1scltm | |- ( ( R e. Ring /\ F e. K ) -> ( A ` F ) = ( F .x. ( 0 .^ X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scltm.k | |- K = ( Base ` R ) |
|
| 2 | ply1scltm.p | |- P = ( Poly1 ` R ) |
|
| 3 | ply1scltm.x | |- X = ( var1 ` R ) |
|
| 4 | ply1scltm.m | |- .x. = ( .s ` P ) |
|
| 5 | ply1scltm.n | |- N = ( mulGrp ` P ) |
|
| 6 | ply1scltm.e | |- .^ = ( .g ` N ) |
|
| 7 | ply1scltm.a | |- A = ( algSc ` P ) |
|
| 8 | 2 | ply1sca2 | |- ( _I ` R ) = ( Scalar ` P ) |
| 9 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 10 | 9 1 | strfvi | |- K = ( Base ` ( _I ` R ) ) |
| 11 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 12 | 7 8 10 4 11 | asclval | |- ( F e. K -> ( A ` F ) = ( F .x. ( 1r ` P ) ) ) |
| 13 | 12 | adantl | |- ( ( R e. Ring /\ F e. K ) -> ( A ` F ) = ( F .x. ( 1r ` P ) ) ) |
| 14 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 15 | 3 2 14 | vr1cl | |- ( R e. Ring -> X e. ( Base ` P ) ) |
| 16 | 5 14 | mgpbas | |- ( Base ` P ) = ( Base ` N ) |
| 17 | 5 11 | ringidval | |- ( 1r ` P ) = ( 0g ` N ) |
| 18 | 16 17 6 | mulg0 | |- ( X e. ( Base ` P ) -> ( 0 .^ X ) = ( 1r ` P ) ) |
| 19 | 15 18 | syl | |- ( R e. Ring -> ( 0 .^ X ) = ( 1r ` P ) ) |
| 20 | 19 | adantr | |- ( ( R e. Ring /\ F e. K ) -> ( 0 .^ X ) = ( 1r ` P ) ) |
| 21 | 20 | oveq2d | |- ( ( R e. Ring /\ F e. K ) -> ( F .x. ( 0 .^ X ) ) = ( F .x. ( 1r ` P ) ) ) |
| 22 | 13 21 | eqtr4d | |- ( ( R e. Ring /\ F e. K ) -> ( A ` F ) = ( F .x. ( 0 .^ X ) ) ) |