This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ply1idvr1 as of 3-Jul-2025. (Contributed by AV, 14-Aug-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1idvr1.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1idvr1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| ply1idvr1.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| ply1idvr1.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| Assertion | ply1idvr1OLD | ⊢ ( 𝑅 ∈ Ring → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1idvr1.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1idvr1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | ply1idvr1.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 4 | ply1idvr1.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 7 | 5 6 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 8 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 9 | eqid | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) | |
| 10 | 5 1 2 8 3 4 9 | ply1scltm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ↑ 𝑋 ) ) ) |
| 11 | 7 10 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ↑ 𝑋 ) ) ) |
| 12 | 1 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 14 | 13 | oveq1d | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ↑ 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ↑ 𝑋 ) ) ) |
| 15 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 16 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 17 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 18 | 1 2 3 4 17 | ply1moncl | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ ℕ0 ) → ( 0 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 19 | 16 18 | mpan2 | ⊢ ( 𝑅 ∈ Ring → ( 0 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 20 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 21 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) | |
| 22 | 17 20 8 21 | lmodvs1 | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 0 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ↑ 𝑋 ) ) = ( 0 ↑ 𝑋 ) ) |
| 23 | 15 19 22 | syl2anc | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ↑ 𝑋 ) ) = ( 0 ↑ 𝑋 ) ) |
| 24 | 11 14 23 | 3eqtrrd | ⊢ ( 𝑅 ∈ Ring → ( 0 ↑ 𝑋 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 25 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 26 | 1 9 6 25 | ply1scl1 | ⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 27 | 24 26 | eqtrd | ⊢ ( 𝑅 ∈ Ring → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |