This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1moncl.p | |- P = ( Poly1 ` R ) |
|
| ply1moncl.x | |- X = ( var1 ` R ) |
||
| ply1moncl.n | |- N = ( mulGrp ` P ) |
||
| ply1moncl.e | |- .^ = ( .g ` N ) |
||
| ply1moncl.b | |- B = ( Base ` P ) |
||
| Assertion | ply1moncl | |- ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1moncl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1moncl.x | |- X = ( var1 ` R ) |
|
| 3 | ply1moncl.n | |- N = ( mulGrp ` P ) |
|
| 4 | ply1moncl.e | |- .^ = ( .g ` N ) |
|
| 5 | ply1moncl.b | |- B = ( Base ` P ) |
|
| 6 | 3 5 | mgpbas | |- B = ( Base ` N ) |
| 7 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 8 | 3 | ringmgp | |- ( P e. Ring -> N e. Mnd ) |
| 9 | 7 8 | syl | |- ( R e. Ring -> N e. Mnd ) |
| 10 | 9 | adantr | |- ( ( R e. Ring /\ D e. NN0 ) -> N e. Mnd ) |
| 11 | simpr | |- ( ( R e. Ring /\ D e. NN0 ) -> D e. NN0 ) |
|
| 12 | 2 1 5 | vr1cl | |- ( R e. Ring -> X e. B ) |
| 13 | 12 | adantr | |- ( ( R e. Ring /\ D e. NN0 ) -> X e. B ) |
| 14 | 6 4 10 11 13 | mulgnn0cld | |- ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B ) |