This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1mul.p | |- P = ( Poly1 ` R ) |
|
| cply1mul.b | |- B = ( Base ` P ) |
||
| cply1mul.0 | |- .0. = ( 0g ` R ) |
||
| cply1mul.m | |- .X. = ( .r ` P ) |
||
| Assertion | cply1mul | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) -> A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1mul.p | |- P = ( Poly1 ` R ) |
|
| 2 | cply1mul.b | |- B = ( Base ` P ) |
|
| 3 | cply1mul.0 | |- .0. = ( 0g ` R ) |
|
| 4 | cply1mul.m | |- .X. = ( .r ` P ) |
|
| 5 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 6 | 1 4 5 2 | coe1mul | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
| 7 | 6 | 3expb | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
| 8 | 7 | adantr | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
| 9 | 8 | adantr | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
| 10 | oveq2 | |- ( s = n -> ( 0 ... s ) = ( 0 ... n ) ) |
|
| 11 | fvoveq1 | |- ( s = n -> ( ( coe1 ` G ) ` ( s - k ) ) = ( ( coe1 ` G ) ` ( n - k ) ) ) |
|
| 12 | 11 | oveq2d | |- ( s = n -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) |
| 13 | 10 12 | mpteq12dv | |- ( s = n -> ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) = ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) |
| 14 | 13 | oveq2d | |- ( s = n -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
| 15 | 14 | adantl | |- ( ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) /\ s = n ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
| 16 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 17 | 16 | adantl | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> n e. NN0 ) |
| 18 | ovexd | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) e. _V ) |
|
| 19 | 9 15 17 18 | fvmptd | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( ( coe1 ` ( F .X. G ) ) ` n ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
| 20 | r19.26 | |- ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) <-> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) ) |
|
| 21 | oveq2 | |- ( k = 0 -> ( n - k ) = ( n - 0 ) ) |
|
| 22 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 23 | 22 | subid1d | |- ( n e. NN -> ( n - 0 ) = n ) |
| 24 | 23 | adantr | |- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( n - 0 ) = n ) |
| 25 | 21 24 | sylan9eqr | |- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( n - k ) = n ) |
| 26 | simpll | |- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> n e. NN ) |
|
| 27 | 25 26 | eqeltrd | |- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( n - k ) e. NN ) |
| 28 | fveqeq2 | |- ( c = ( n - k ) -> ( ( ( coe1 ` G ) ` c ) = .0. <-> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
|
| 29 | 28 | rspcv | |- ( ( n - k ) e. NN -> ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
| 30 | 27 29 | syl | |- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
| 31 | oveq2 | |- ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) ) |
|
| 32 | simpll | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> R e. Ring ) |
|
| 33 | simprl | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> F e. B ) |
|
| 34 | elfznn0 | |- ( k e. ( 0 ... n ) -> k e. NN0 ) |
|
| 35 | 34 | adantl | |- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> k e. NN0 ) |
| 36 | 35 | adantr | |- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> k e. NN0 ) |
| 37 | eqid | |- ( coe1 ` F ) = ( coe1 ` F ) |
|
| 38 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 39 | 37 2 1 38 | coe1fvalcl | |- ( ( F e. B /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) |
| 40 | 33 36 39 | syl2an | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) |
| 41 | 38 5 3 | ringrz | |- ( ( R e. Ring /\ ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) = .0. ) |
| 42 | 32 40 41 | syl2anc | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) = .0. ) |
| 43 | 31 42 | sylan9eqr | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) /\ ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 44 | 43 | ex | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
| 45 | 44 | expcom | |- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 46 | 45 | com23 | |- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 47 | 30 46 | syldc | |- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 48 | 47 | expd | |- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 49 | 48 | com24 | |- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 50 | 49 | adantl | |- ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 51 | 50 | com13 | |- ( k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 52 | neqne | |- ( -. k = 0 -> k =/= 0 ) |
|
| 53 | 52 34 | anim12ci | |- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( k e. NN0 /\ k =/= 0 ) ) |
| 54 | elnnne0 | |- ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) |
|
| 55 | 53 54 | sylibr | |- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> k e. NN ) |
| 56 | fveqeq2 | |- ( c = k -> ( ( ( coe1 ` F ) ` c ) = .0. <-> ( ( coe1 ` F ) ` k ) = .0. ) ) |
|
| 57 | 56 | rspcv | |- ( k e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( coe1 ` F ) ` k ) = .0. ) ) |
| 58 | 55 57 | syl | |- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( coe1 ` F ) ` k ) = .0. ) ) |
| 59 | oveq1 | |- ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) |
|
| 60 | simpll | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> R e. Ring ) |
|
| 61 | 2 | eleq2i | |- ( G e. B <-> G e. ( Base ` P ) ) |
| 62 | 61 | biimpi | |- ( G e. B -> G e. ( Base ` P ) ) |
| 63 | 62 | adantl | |- ( ( F e. B /\ G e. B ) -> G e. ( Base ` P ) ) |
| 64 | 63 | adantl | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> G e. ( Base ` P ) ) |
| 65 | fznn0sub | |- ( k e. ( 0 ... n ) -> ( n - k ) e. NN0 ) |
|
| 66 | eqid | |- ( coe1 ` G ) = ( coe1 ` G ) |
|
| 67 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 68 | 66 67 1 38 | coe1fvalcl | |- ( ( G e. ( Base ` P ) /\ ( n - k ) e. NN0 ) -> ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) |
| 69 | 64 65 68 | syl2an | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) |
| 70 | 38 5 3 | ringlz | |- ( ( R e. Ring /\ ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) -> ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 71 | 60 69 70 | syl2anc | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 72 | 59 71 | sylan9eqr | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) /\ ( ( coe1 ` F ) ` k ) = .0. ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 73 | 72 | ex | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
| 74 | 73 | ex | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 75 | 74 | com23 | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 76 | 75 | a1dd | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 77 | 76 | com14 | |- ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 78 | 77 | adantl | |- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 79 | 58 78 | syld | |- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 80 | 79 | com24 | |- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( n e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 81 | 80 | ex | |- ( -. k = 0 -> ( k e. ( 0 ... n ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( n e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) ) |
| 82 | 81 | com14 | |- ( n e. NN -> ( k e. ( 0 ... n ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) ) |
| 83 | 82 | imp | |- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 84 | 83 | com14 | |- ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 85 | 84 | adantr | |- ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 86 | 85 | com13 | |- ( -. k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 87 | 51 86 | pm2.61i | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 88 | 20 87 | biimtrid | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 89 | 88 | imp | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
| 90 | 89 | impl | |- ( ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 91 | 90 | mpteq2dva | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) = ( k e. ( 0 ... n ) |-> .0. ) ) |
| 92 | 91 | oveq2d | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) ) |
| 93 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 94 | ovexd | |- ( R e. Ring -> ( 0 ... n ) e. _V ) |
|
| 95 | 3 | gsumz | |- ( ( R e. Mnd /\ ( 0 ... n ) e. _V ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 96 | 93 94 95 | syl2anc | |- ( R e. Ring -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 97 | 96 | adantr | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 98 | 97 | adantr | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 99 | 98 | adantr | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 100 | 19 92 99 | 3eqtrd | |- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
| 101 | 100 | ralrimiva | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> A. n e. NN ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
| 102 | fveqeq2 | |- ( c = n -> ( ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. <-> ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) ) |
|
| 103 | 102 | cbvralvw | |- ( A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. <-> A. n e. NN ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
| 104 | 101 103 | sylibr | |- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. ) |
| 105 | 104 | ex | |- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) -> A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. ) ) |