This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | |- A e. ~H |
|
| hvnegdi.2 | |- B e. ~H |
||
| Assertion | hvsubeq0i | |- ( ( A -h B ) = 0h <-> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | |- A e. ~H |
|
| 2 | hvnegdi.2 | |- B e. ~H |
|
| 3 | 1 2 | hvsubvali | |- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 4 | 3 | eqeq1i | |- ( ( A -h B ) = 0h <-> ( A +h ( -u 1 .h B ) ) = 0h ) |
| 5 | oveq1 | |- ( ( A +h ( -u 1 .h B ) ) = 0h -> ( ( A +h ( -u 1 .h B ) ) +h B ) = ( 0h +h B ) ) |
|
| 6 | 4 5 | sylbi | |- ( ( A -h B ) = 0h -> ( ( A +h ( -u 1 .h B ) ) +h B ) = ( 0h +h B ) ) |
| 7 | neg1cn | |- -u 1 e. CC |
|
| 8 | 7 2 | hvmulcli | |- ( -u 1 .h B ) e. ~H |
| 9 | 1 8 2 | hvadd32i | |- ( ( A +h ( -u 1 .h B ) ) +h B ) = ( ( A +h B ) +h ( -u 1 .h B ) ) |
| 10 | 1 2 8 | hvassi | |- ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) |
| 11 | 2 | hvnegidi | |- ( B +h ( -u 1 .h B ) ) = 0h |
| 12 | 11 | oveq2i | |- ( A +h ( B +h ( -u 1 .h B ) ) ) = ( A +h 0h ) |
| 13 | ax-hvaddid | |- ( A e. ~H -> ( A +h 0h ) = A ) |
|
| 14 | 1 13 | ax-mp | |- ( A +h 0h ) = A |
| 15 | 12 14 | eqtri | |- ( A +h ( B +h ( -u 1 .h B ) ) ) = A |
| 16 | 10 15 | eqtri | |- ( ( A +h B ) +h ( -u 1 .h B ) ) = A |
| 17 | 9 16 | eqtri | |- ( ( A +h ( -u 1 .h B ) ) +h B ) = A |
| 18 | 2 | hvaddlidi | |- ( 0h +h B ) = B |
| 19 | 6 17 18 | 3eqtr3g | |- ( ( A -h B ) = 0h -> A = B ) |
| 20 | oveq1 | |- ( A = B -> ( A -h B ) = ( B -h B ) ) |
|
| 21 | hvsubid | |- ( B e. ~H -> ( B -h B ) = 0h ) |
|
| 22 | 2 21 | ax-mp | |- ( B -h B ) = 0h |
| 23 | 20 22 | eqtrdi | |- ( A = B -> ( A -h B ) = 0h ) |
| 24 | 19 23 | impbii | |- ( ( A -h B ) = 0h <-> A = B ) |