This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1fval.v | |- B = ( Base ` G ) |
|
| pj1fval.a | |- .+ = ( +g ` G ) |
||
| pj1fval.s | |- .(+) = ( LSSum ` G ) |
||
| pj1fval.p | |- P = ( proj1 ` G ) |
||
| Assertion | pj1val | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> ( ( T P U ) ` X ) = ( iota_ x e. T E. y e. U X = ( x .+ y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1fval.v | |- B = ( Base ` G ) |
|
| 2 | pj1fval.a | |- .+ = ( +g ` G ) |
|
| 3 | pj1fval.s | |- .(+) = ( LSSum ` G ) |
|
| 4 | pj1fval.p | |- P = ( proj1 ` G ) |
|
| 5 | 1 2 3 4 | pj1fval | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |
| 6 | 5 | adantr | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |
| 7 | simpr | |- ( ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) /\ z = X ) -> z = X ) |
|
| 8 | 7 | eqeq1d | |- ( ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) /\ z = X ) -> ( z = ( x .+ y ) <-> X = ( x .+ y ) ) ) |
| 9 | 8 | rexbidv | |- ( ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) /\ z = X ) -> ( E. y e. U z = ( x .+ y ) <-> E. y e. U X = ( x .+ y ) ) ) |
| 10 | 9 | riotabidv | |- ( ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) /\ z = X ) -> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) = ( iota_ x e. T E. y e. U X = ( x .+ y ) ) ) |
| 11 | simpr | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> X e. ( T .(+) U ) ) |
|
| 12 | riotaex | |- ( iota_ x e. T E. y e. U X = ( x .+ y ) ) e. _V |
|
| 13 | 12 | a1i | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> ( iota_ x e. T E. y e. U X = ( x .+ y ) ) e. _V ) |
| 14 | 6 10 11 13 | fvmptd | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> ( ( T P U ) ` X ) = ( iota_ x e. T E. y e. U X = ( x .+ y ) ) ) |