This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsubg.p | |- .(+) = ( LSSum ` G ) |
|
| lsmsubg.z | |- Z = ( Cntz ` G ) |
||
| Assertion | lsmcom2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsubg.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmsubg.z | |- Z = ( Cntz ` G ) |
|
| 3 | simp3 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T C_ ( Z ` U ) ) |
|
| 4 | 3 | sselda | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ a e. T ) -> a e. ( Z ` U ) ) |
| 5 | 4 | adantrr | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> a e. ( Z ` U ) ) |
| 6 | simprr | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> b e. U ) |
|
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | 7 2 | cntzi | |- ( ( a e. ( Z ` U ) /\ b e. U ) -> ( a ( +g ` G ) b ) = ( b ( +g ` G ) a ) ) |
| 9 | 5 6 8 | syl2anc | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( a ( +g ` G ) b ) = ( b ( +g ` G ) a ) ) |
| 10 | 9 | eqeq2d | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( x = ( a ( +g ` G ) b ) <-> x = ( b ( +g ` G ) a ) ) ) |
| 11 | 10 | 2rexbidva | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( E. a e. T E. b e. U x = ( a ( +g ` G ) b ) <-> E. a e. T E. b e. U x = ( b ( +g ` G ) a ) ) ) |
| 12 | rexcom | |- ( E. a e. T E. b e. U x = ( b ( +g ` G ) a ) <-> E. b e. U E. a e. T x = ( b ( +g ` G ) a ) ) |
|
| 13 | 11 12 | bitrdi | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( E. a e. T E. b e. U x = ( a ( +g ` G ) b ) <-> E. b e. U E. a e. T x = ( b ( +g ` G ) a ) ) ) |
| 14 | 7 1 | lsmelval | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. b e. U x = ( a ( +g ` G ) b ) ) ) |
| 15 | 14 | 3adant3 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. b e. U x = ( a ( +g ` G ) b ) ) ) |
| 16 | 7 1 | lsmelval | |- ( ( U e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> ( x e. ( U .(+) T ) <-> E. b e. U E. a e. T x = ( b ( +g ` G ) a ) ) ) |
| 17 | 16 | ancoms | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( U .(+) T ) <-> E. b e. U E. a e. T x = ( b ( +g ` G ) a ) ) ) |
| 18 | 17 | 3adant3 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( U .(+) T ) <-> E. b e. U E. a e. T x = ( b ( +g ` G ) a ) ) ) |
| 19 | 13 15 18 | 3bitr4d | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) <-> x e. ( U .(+) T ) ) ) |
| 20 | 19 | eqrdv | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |