This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | |- .+ = ( +g ` G ) |
|
| pj1eu.s | |- .(+) = ( LSSum ` G ) |
||
| pj1eu.o | |- .0. = ( 0g ` G ) |
||
| pj1eu.z | |- Z = ( Cntz ` G ) |
||
| pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
||
| Assertion | pj1eu | |- ( ( ph /\ X e. ( T .(+) U ) ) -> E! x e. T E. y e. U X = ( x .+ y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | |- .+ = ( +g ` G ) |
|
| 2 | pj1eu.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | pj1eu.o | |- .0. = ( 0g ` G ) |
|
| 4 | pj1eu.z | |- Z = ( Cntz ` G ) |
|
| 5 | pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 6 | pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 7 | pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 9 | 1 2 | lsmelval | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( X e. ( T .(+) U ) <-> E. x e. T E. y e. U X = ( x .+ y ) ) ) |
| 10 | 5 6 9 | syl2anc | |- ( ph -> ( X e. ( T .(+) U ) <-> E. x e. T E. y e. U X = ( x .+ y ) ) ) |
| 11 | 10 | biimpa | |- ( ( ph /\ X e. ( T .(+) U ) ) -> E. x e. T E. y e. U X = ( x .+ y ) ) |
| 12 | reeanv | |- ( E. y e. U E. v e. U ( X = ( x .+ y ) /\ X = ( u .+ v ) ) <-> ( E. y e. U X = ( x .+ y ) /\ E. v e. U X = ( u .+ v ) ) ) |
|
| 13 | eqtr2 | |- ( ( X = ( x .+ y ) /\ X = ( u .+ v ) ) -> ( x .+ y ) = ( u .+ v ) ) |
|
| 14 | 5 | ad2antrr | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> T e. ( SubGrp ` G ) ) |
| 15 | 6 | ad2antrr | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> U e. ( SubGrp ` G ) ) |
| 16 | 7 | ad2antrr | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> ( T i^i U ) = { .0. } ) |
| 17 | 8 | ad2antrr | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> T C_ ( Z ` U ) ) |
| 18 | simplrl | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> x e. T ) |
|
| 19 | simplrr | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> u e. T ) |
|
| 20 | simprl | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> y e. U ) |
|
| 21 | simprr | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> v e. U ) |
|
| 22 | 1 3 4 14 15 16 17 18 19 20 21 | subgdisjb | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> ( ( x .+ y ) = ( u .+ v ) <-> ( x = u /\ y = v ) ) ) |
| 23 | simpl | |- ( ( x = u /\ y = v ) -> x = u ) |
|
| 24 | 22 23 | biimtrdi | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> ( ( x .+ y ) = ( u .+ v ) -> x = u ) ) |
| 25 | 13 24 | syl5 | |- ( ( ( ph /\ ( x e. T /\ u e. T ) ) /\ ( y e. U /\ v e. U ) ) -> ( ( X = ( x .+ y ) /\ X = ( u .+ v ) ) -> x = u ) ) |
| 26 | 25 | rexlimdvva | |- ( ( ph /\ ( x e. T /\ u e. T ) ) -> ( E. y e. U E. v e. U ( X = ( x .+ y ) /\ X = ( u .+ v ) ) -> x = u ) ) |
| 27 | 12 26 | biimtrrid | |- ( ( ph /\ ( x e. T /\ u e. T ) ) -> ( ( E. y e. U X = ( x .+ y ) /\ E. v e. U X = ( u .+ v ) ) -> x = u ) ) |
| 28 | 27 | ralrimivva | |- ( ph -> A. x e. T A. u e. T ( ( E. y e. U X = ( x .+ y ) /\ E. v e. U X = ( u .+ v ) ) -> x = u ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ X e. ( T .(+) U ) ) -> A. x e. T A. u e. T ( ( E. y e. U X = ( x .+ y ) /\ E. v e. U X = ( u .+ v ) ) -> x = u ) ) |
| 30 | oveq1 | |- ( x = u -> ( x .+ y ) = ( u .+ y ) ) |
|
| 31 | 30 | eqeq2d | |- ( x = u -> ( X = ( x .+ y ) <-> X = ( u .+ y ) ) ) |
| 32 | 31 | rexbidv | |- ( x = u -> ( E. y e. U X = ( x .+ y ) <-> E. y e. U X = ( u .+ y ) ) ) |
| 33 | oveq2 | |- ( y = v -> ( u .+ y ) = ( u .+ v ) ) |
|
| 34 | 33 | eqeq2d | |- ( y = v -> ( X = ( u .+ y ) <-> X = ( u .+ v ) ) ) |
| 35 | 34 | cbvrexvw | |- ( E. y e. U X = ( u .+ y ) <-> E. v e. U X = ( u .+ v ) ) |
| 36 | 32 35 | bitrdi | |- ( x = u -> ( E. y e. U X = ( x .+ y ) <-> E. v e. U X = ( u .+ v ) ) ) |
| 37 | 36 | reu4 | |- ( E! x e. T E. y e. U X = ( x .+ y ) <-> ( E. x e. T E. y e. U X = ( x .+ y ) /\ A. x e. T A. u e. T ( ( E. y e. U X = ( x .+ y ) /\ E. v e. U X = ( u .+ v ) ) -> x = u ) ) ) |
| 38 | 11 29 37 | sylanbrc | |- ( ( ph /\ X e. ( T .(+) U ) ) -> E! x e. T E. y e. U X = ( x .+ y ) ) |