This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | |- .+ = ( +g ` G ) |
|
| pj1eu.s | |- .(+) = ( LSSum ` G ) |
||
| pj1eu.o | |- .0. = ( 0g ` G ) |
||
| pj1eu.z | |- Z = ( Cntz ` G ) |
||
| pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
||
| pj1f.p | |- P = ( proj1 ` G ) |
||
| Assertion | pj1lid | |- ( ( ph /\ X e. T ) -> ( ( T P U ) ` X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | |- .+ = ( +g ` G ) |
|
| 2 | pj1eu.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | pj1eu.o | |- .0. = ( 0g ` G ) |
|
| 4 | pj1eu.z | |- Z = ( Cntz ` G ) |
|
| 5 | pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 6 | pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 7 | pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 9 | pj1f.p | |- P = ( proj1 ` G ) |
|
| 10 | 5 | adantr | |- ( ( ph /\ X e. T ) -> T e. ( SubGrp ` G ) ) |
| 11 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 12 | 10 11 | syl | |- ( ( ph /\ X e. T ) -> G e. Grp ) |
| 13 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 14 | 13 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 15 | 5 14 | syl | |- ( ph -> T C_ ( Base ` G ) ) |
| 16 | 15 | sselda | |- ( ( ph /\ X e. T ) -> X e. ( Base ` G ) ) |
| 17 | 13 1 3 | grprid | |- ( ( G e. Grp /\ X e. ( Base ` G ) ) -> ( X .+ .0. ) = X ) |
| 18 | 12 16 17 | syl2anc | |- ( ( ph /\ X e. T ) -> ( X .+ .0. ) = X ) |
| 19 | 18 | eqcomd | |- ( ( ph /\ X e. T ) -> X = ( X .+ .0. ) ) |
| 20 | 6 | adantr | |- ( ( ph /\ X e. T ) -> U e. ( SubGrp ` G ) ) |
| 21 | 7 | adantr | |- ( ( ph /\ X e. T ) -> ( T i^i U ) = { .0. } ) |
| 22 | 8 | adantr | |- ( ( ph /\ X e. T ) -> T C_ ( Z ` U ) ) |
| 23 | 2 | lsmub1 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( T .(+) U ) ) |
| 24 | 5 6 23 | syl2anc | |- ( ph -> T C_ ( T .(+) U ) ) |
| 25 | 24 | sselda | |- ( ( ph /\ X e. T ) -> X e. ( T .(+) U ) ) |
| 26 | simpr | |- ( ( ph /\ X e. T ) -> X e. T ) |
|
| 27 | 3 | subg0cl | |- ( U e. ( SubGrp ` G ) -> .0. e. U ) |
| 28 | 20 27 | syl | |- ( ( ph /\ X e. T ) -> .0. e. U ) |
| 29 | 1 2 3 4 10 20 21 22 9 25 26 28 | pj1eq | |- ( ( ph /\ X e. T ) -> ( X = ( X .+ .0. ) <-> ( ( ( T P U ) ` X ) = X /\ ( ( U P T ) ` X ) = .0. ) ) ) |
| 30 | 19 29 | mpbid | |- ( ( ph /\ X e. T ) -> ( ( ( T P U ) ` X ) = X /\ ( ( U P T ) ` X ) = .0. ) ) |
| 31 | 30 | simpld | |- ( ( ph /\ X e. T ) -> ( ( T P U ) ` X ) = X ) |