This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ||
| pj1eu.s | |||
| pj1eu.o | |||
| pj1eu.z | |||
| pj1eu.2 | |||
| pj1eu.3 | |||
| pj1eu.4 | |||
| pj1eu.5 | |||
| pj1f.p | |||
| pj1eq.5 | |||
| pj1eq.6 | |||
| pj1eq.7 | |||
| Assertion | pj1eq |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ||
| 2 | pj1eu.s | ||
| 3 | pj1eu.o | ||
| 4 | pj1eu.z | ||
| 5 | pj1eu.2 | ||
| 6 | pj1eu.3 | ||
| 7 | pj1eu.4 | ||
| 8 | pj1eu.5 | ||
| 9 | pj1f.p | ||
| 10 | pj1eq.5 | ||
| 11 | pj1eq.6 | ||
| 12 | pj1eq.7 | ||
| 13 | 1 2 3 4 5 6 7 8 9 | pj1id | |
| 14 | 10 13 | mpdan | |
| 15 | 14 | eqeq1d | |
| 16 | 1 2 3 4 5 6 7 8 9 | pj1f | |
| 17 | 16 10 | ffvelcdmd | |
| 18 | 1 2 3 4 5 6 7 8 9 | pj2f | |
| 19 | 18 10 | ffvelcdmd | |
| 20 | 1 3 4 5 6 7 8 17 11 19 12 | subgdisjb | |
| 21 | 15 20 | bitrd |