This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth , this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgdisj.p | |- .+ = ( +g ` G ) |
|
| subgdisj.o | |- .0. = ( 0g ` G ) |
||
| subgdisj.z | |- Z = ( Cntz ` G ) |
||
| subgdisj.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| subgdisj.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| subgdisj.i | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| subgdisj.s | |- ( ph -> T C_ ( Z ` U ) ) |
||
| subgdisj.a | |- ( ph -> A e. T ) |
||
| subgdisj.c | |- ( ph -> C e. T ) |
||
| subgdisj.b | |- ( ph -> B e. U ) |
||
| subgdisj.d | |- ( ph -> D e. U ) |
||
| Assertion | subgdisjb | |- ( ph -> ( ( A .+ B ) = ( C .+ D ) <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | |- .+ = ( +g ` G ) |
|
| 2 | subgdisj.o | |- .0. = ( 0g ` G ) |
|
| 3 | subgdisj.z | |- Z = ( Cntz ` G ) |
|
| 4 | subgdisj.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 5 | subgdisj.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 6 | subgdisj.i | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 7 | subgdisj.s | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 8 | subgdisj.a | |- ( ph -> A e. T ) |
|
| 9 | subgdisj.c | |- ( ph -> C e. T ) |
|
| 10 | subgdisj.b | |- ( ph -> B e. U ) |
|
| 11 | subgdisj.d | |- ( ph -> D e. U ) |
|
| 12 | 4 | adantr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> T e. ( SubGrp ` G ) ) |
| 13 | 5 | adantr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> U e. ( SubGrp ` G ) ) |
| 14 | 6 | adantr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> ( T i^i U ) = { .0. } ) |
| 15 | 7 | adantr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> T C_ ( Z ` U ) ) |
| 16 | 8 | adantr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> A e. T ) |
| 17 | 9 | adantr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> C e. T ) |
| 18 | 10 | adantr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> B e. U ) |
| 19 | 11 | adantr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> D e. U ) |
| 20 | simpr | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> ( A .+ B ) = ( C .+ D ) ) |
|
| 21 | 1 2 3 12 13 14 15 16 17 18 19 20 | subgdisj1 | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> A = C ) |
| 22 | 1 2 3 12 13 14 15 16 17 18 19 20 | subgdisj2 | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> B = D ) |
| 23 | 21 22 | jca | |- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> ( A = C /\ B = D ) ) |
| 24 | 23 | ex | |- ( ph -> ( ( A .+ B ) = ( C .+ D ) -> ( A = C /\ B = D ) ) ) |
| 25 | oveq12 | |- ( ( A = C /\ B = D ) -> ( A .+ B ) = ( C .+ D ) ) |
|
| 26 | 24 25 | impbid1 | |- ( ph -> ( ( A .+ B ) = ( C .+ D ) <-> ( A = C /\ B = D ) ) ) |