This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phplem1 | |- ( ( A e. _om /\ B e. suc A ) -> A ~~ ( suc A \ { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. _om /\ B e. suc A ) -> A e. _om ) |
|
| 2 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 3 | enrefnn | |- ( suc A e. _om -> suc A ~~ suc A ) |
|
| 4 | 2 3 | syl | |- ( A e. _om -> suc A ~~ suc A ) |
| 5 | 4 | adantr | |- ( ( A e. _om /\ B e. suc A ) -> suc A ~~ suc A ) |
| 6 | simpr | |- ( ( A e. _om /\ B e. suc A ) -> B e. suc A ) |
|
| 7 | dif1ennn | |- ( ( A e. _om /\ suc A ~~ suc A /\ B e. suc A ) -> ( suc A \ { B } ) ~~ A ) |
|
| 8 | 1 5 6 7 | syl3anc | |- ( ( A e. _om /\ B e. suc A ) -> ( suc A \ { B } ) ~~ A ) |
| 9 | nnfi | |- ( A e. _om -> A e. Fin ) |
|
| 10 | ensymfib | |- ( A e. Fin -> ( A ~~ ( suc A \ { B } ) <-> ( suc A \ { B } ) ~~ A ) ) |
|
| 11 | 1 9 10 | 3syl | |- ( ( A e. _om /\ B e. suc A ) -> ( A ~~ ( suc A \ { B } ) <-> ( suc A \ { B } ) ~~ A ) ) |
| 12 | 8 11 | mpbird | |- ( ( A e. _om /\ B e. suc A ) -> A ~~ ( suc A \ { B } ) ) |