This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth ). (Contributed by BTernaryTau, 4-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbthfi | |- ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | |- Rel ~<_ |
|
| 2 | 1 | brrelex1i | |- ( A ~<_ B -> A e. _V ) |
| 3 | 1 | brrelex1i | |- ( B ~<_ A -> B e. _V ) |
| 4 | breq1 | |- ( z = A -> ( z ~<_ w <-> A ~<_ w ) ) |
|
| 5 | breq2 | |- ( z = A -> ( w ~<_ z <-> w ~<_ A ) ) |
|
| 6 | 4 5 | 3anbi23d | |- ( z = A -> ( ( w e. Fin /\ z ~<_ w /\ w ~<_ z ) <-> ( w e. Fin /\ A ~<_ w /\ w ~<_ A ) ) ) |
| 7 | breq1 | |- ( z = A -> ( z ~~ w <-> A ~~ w ) ) |
|
| 8 | 6 7 | imbi12d | |- ( z = A -> ( ( ( w e. Fin /\ z ~<_ w /\ w ~<_ z ) -> z ~~ w ) <-> ( ( w e. Fin /\ A ~<_ w /\ w ~<_ A ) -> A ~~ w ) ) ) |
| 9 | eleq1 | |- ( w = B -> ( w e. Fin <-> B e. Fin ) ) |
|
| 10 | breq2 | |- ( w = B -> ( A ~<_ w <-> A ~<_ B ) ) |
|
| 11 | breq1 | |- ( w = B -> ( w ~<_ A <-> B ~<_ A ) ) |
|
| 12 | 9 10 11 | 3anbi123d | |- ( w = B -> ( ( w e. Fin /\ A ~<_ w /\ w ~<_ A ) <-> ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) ) ) |
| 13 | breq2 | |- ( w = B -> ( A ~~ w <-> A ~~ B ) ) |
|
| 14 | 12 13 | imbi12d | |- ( w = B -> ( ( ( w e. Fin /\ A ~<_ w /\ w ~<_ A ) -> A ~~ w ) <-> ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) ) ) |
| 15 | vex | |- z e. _V |
|
| 16 | sseq1 | |- ( y = x -> ( y C_ z <-> x C_ z ) ) |
|
| 17 | imaeq2 | |- ( y = x -> ( f " y ) = ( f " x ) ) |
|
| 18 | 17 | difeq2d | |- ( y = x -> ( w \ ( f " y ) ) = ( w \ ( f " x ) ) ) |
| 19 | 18 | imaeq2d | |- ( y = x -> ( g " ( w \ ( f " y ) ) ) = ( g " ( w \ ( f " x ) ) ) ) |
| 20 | difeq2 | |- ( y = x -> ( z \ y ) = ( z \ x ) ) |
|
| 21 | 19 20 | sseq12d | |- ( y = x -> ( ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) <-> ( g " ( w \ ( f " x ) ) ) C_ ( z \ x ) ) ) |
| 22 | 16 21 | anbi12d | |- ( y = x -> ( ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) <-> ( x C_ z /\ ( g " ( w \ ( f " x ) ) ) C_ ( z \ x ) ) ) ) |
| 23 | 22 | cbvabv | |- { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } = { x | ( x C_ z /\ ( g " ( w \ ( f " x ) ) ) C_ ( z \ x ) ) } |
| 24 | eqid | |- ( ( f |` U. { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } ) u. ( `' g |` ( z \ U. { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } ) ) ) = ( ( f |` U. { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } ) u. ( `' g |` ( z \ U. { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } ) ) ) |
|
| 25 | vex | |- w e. _V |
|
| 26 | 15 23 24 25 | sbthfilem | |- ( ( w e. Fin /\ z ~<_ w /\ w ~<_ z ) -> z ~~ w ) |
| 27 | 8 14 26 | vtocl2g | |- ( ( A e. _V /\ B e. _V ) -> ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) ) |
| 28 | 2 3 27 | syl2an | |- ( ( A ~<_ B /\ B ~<_ A ) -> ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) ) |
| 29 | 28 | 3adant1 | |- ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) ) |
| 30 | 29 | pm2.43i | |- ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) |