This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two equinumerous natural numbers are equal. Proposition 10.20 of TakeutiZaring p. 90 and its converse. Also compare Corollary 6E of Enderton p. 136. (Contributed by NM, 28-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nneneq | |- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( x = (/) -> ( x ~~ z <-> (/) ~~ z ) ) |
|
| 2 | eqeq1 | |- ( x = (/) -> ( x = z <-> (/) = z ) ) |
|
| 3 | 1 2 | imbi12d | |- ( x = (/) -> ( ( x ~~ z -> x = z ) <-> ( (/) ~~ z -> (/) = z ) ) ) |
| 4 | 3 | ralbidv | |- ( x = (/) -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( (/) ~~ z -> (/) = z ) ) ) |
| 5 | breq1 | |- ( x = y -> ( x ~~ z <-> y ~~ z ) ) |
|
| 6 | eqeq1 | |- ( x = y -> ( x = z <-> y = z ) ) |
|
| 7 | 5 6 | imbi12d | |- ( x = y -> ( ( x ~~ z -> x = z ) <-> ( y ~~ z -> y = z ) ) ) |
| 8 | 7 | ralbidv | |- ( x = y -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( y ~~ z -> y = z ) ) ) |
| 9 | breq1 | |- ( x = suc y -> ( x ~~ z <-> suc y ~~ z ) ) |
|
| 10 | eqeq1 | |- ( x = suc y -> ( x = z <-> suc y = z ) ) |
|
| 11 | 9 10 | imbi12d | |- ( x = suc y -> ( ( x ~~ z -> x = z ) <-> ( suc y ~~ z -> suc y = z ) ) ) |
| 12 | 11 | ralbidv | |- ( x = suc y -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( suc y ~~ z -> suc y = z ) ) ) |
| 13 | breq1 | |- ( x = A -> ( x ~~ z <-> A ~~ z ) ) |
|
| 14 | eqeq1 | |- ( x = A -> ( x = z <-> A = z ) ) |
|
| 15 | 13 14 | imbi12d | |- ( x = A -> ( ( x ~~ z -> x = z ) <-> ( A ~~ z -> A = z ) ) ) |
| 16 | 15 | ralbidv | |- ( x = A -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( A ~~ z -> A = z ) ) ) |
| 17 | 0fi | |- (/) e. Fin |
|
| 18 | ensymfib | |- ( (/) e. Fin -> ( (/) ~~ z <-> z ~~ (/) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( (/) ~~ z <-> z ~~ (/) ) |
| 20 | en0 | |- ( z ~~ (/) <-> z = (/) ) |
|
| 21 | eqcom | |- ( z = (/) <-> (/) = z ) |
|
| 22 | 20 21 | bitri | |- ( z ~~ (/) <-> (/) = z ) |
| 23 | 19 22 | sylbb | |- ( (/) ~~ z -> (/) = z ) |
| 24 | 23 | rgenw | |- A. z e. _om ( (/) ~~ z -> (/) = z ) |
| 25 | nn0suc | |- ( w e. _om -> ( w = (/) \/ E. z e. _om w = suc z ) ) |
|
| 26 | en0 | |- ( suc y ~~ (/) <-> suc y = (/) ) |
|
| 27 | breq2 | |- ( w = (/) -> ( suc y ~~ w <-> suc y ~~ (/) ) ) |
|
| 28 | eqeq2 | |- ( w = (/) -> ( suc y = w <-> suc y = (/) ) ) |
|
| 29 | 27 28 | bibi12d | |- ( w = (/) -> ( ( suc y ~~ w <-> suc y = w ) <-> ( suc y ~~ (/) <-> suc y = (/) ) ) ) |
| 30 | 26 29 | mpbiri | |- ( w = (/) -> ( suc y ~~ w <-> suc y = w ) ) |
| 31 | 30 | biimpd | |- ( w = (/) -> ( suc y ~~ w -> suc y = w ) ) |
| 32 | 31 | a1i | |- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( w = (/) -> ( suc y ~~ w -> suc y = w ) ) ) |
| 33 | nfv | |- F/ z y e. _om |
|
| 34 | nfra1 | |- F/ z A. z e. _om ( y ~~ z -> y = z ) |
|
| 35 | 33 34 | nfan | |- F/ z ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) |
| 36 | nfv | |- F/ z ( suc y ~~ w -> suc y = w ) |
|
| 37 | vex | |- y e. _V |
|
| 38 | 37 | phplem2 | |- ( ( y e. _om /\ z e. _om ) -> ( suc y ~~ suc z -> y ~~ z ) ) |
| 39 | 38 | imim1d | |- ( ( y e. _om /\ z e. _om ) -> ( ( y ~~ z -> y = z ) -> ( suc y ~~ suc z -> y = z ) ) ) |
| 40 | 39 | ex | |- ( y e. _om -> ( z e. _om -> ( ( y ~~ z -> y = z ) -> ( suc y ~~ suc z -> y = z ) ) ) ) |
| 41 | 40 | a2d | |- ( y e. _om -> ( ( z e. _om -> ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> y = z ) ) ) ) |
| 42 | rsp | |- ( A. z e. _om ( y ~~ z -> y = z ) -> ( z e. _om -> ( y ~~ z -> y = z ) ) ) |
|
| 43 | 41 42 | impel | |- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> y = z ) ) ) |
| 44 | suceq | |- ( y = z -> suc y = suc z ) |
|
| 45 | 43 44 | syl8 | |- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> suc y = suc z ) ) ) |
| 46 | breq2 | |- ( w = suc z -> ( suc y ~~ w <-> suc y ~~ suc z ) ) |
|
| 47 | eqeq2 | |- ( w = suc z -> ( suc y = w <-> suc y = suc z ) ) |
|
| 48 | 46 47 | imbi12d | |- ( w = suc z -> ( ( suc y ~~ w -> suc y = w ) <-> ( suc y ~~ suc z -> suc y = suc z ) ) ) |
| 49 | 48 | biimprcd | |- ( ( suc y ~~ suc z -> suc y = suc z ) -> ( w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) |
| 50 | 45 49 | syl6 | |- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) ) |
| 51 | 35 36 50 | rexlimd | |- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( E. z e. _om w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) |
| 52 | 32 51 | jaod | |- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( ( w = (/) \/ E. z e. _om w = suc z ) -> ( suc y ~~ w -> suc y = w ) ) ) |
| 53 | 52 | ex | |- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> ( ( w = (/) \/ E. z e. _om w = suc z ) -> ( suc y ~~ w -> suc y = w ) ) ) ) |
| 54 | 25 53 | syl7 | |- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> ( w e. _om -> ( suc y ~~ w -> suc y = w ) ) ) ) |
| 55 | 54 | ralrimdv | |- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> A. w e. _om ( suc y ~~ w -> suc y = w ) ) ) |
| 56 | breq2 | |- ( w = z -> ( suc y ~~ w <-> suc y ~~ z ) ) |
|
| 57 | eqeq2 | |- ( w = z -> ( suc y = w <-> suc y = z ) ) |
|
| 58 | 56 57 | imbi12d | |- ( w = z -> ( ( suc y ~~ w -> suc y = w ) <-> ( suc y ~~ z -> suc y = z ) ) ) |
| 59 | 58 | cbvralvw | |- ( A. w e. _om ( suc y ~~ w -> suc y = w ) <-> A. z e. _om ( suc y ~~ z -> suc y = z ) ) |
| 60 | 55 59 | imbitrdi | |- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> A. z e. _om ( suc y ~~ z -> suc y = z ) ) ) |
| 61 | 4 8 12 16 24 60 | finds | |- ( A e. _om -> A. z e. _om ( A ~~ z -> A = z ) ) |
| 62 | breq2 | |- ( z = B -> ( A ~~ z <-> A ~~ B ) ) |
|
| 63 | eqeq2 | |- ( z = B -> ( A = z <-> A = B ) ) |
|
| 64 | 62 63 | imbi12d | |- ( z = B -> ( ( A ~~ z -> A = z ) <-> ( A ~~ B -> A = B ) ) ) |
| 65 | 64 | rspcv | |- ( B e. _om -> ( A. z e. _om ( A ~~ z -> A = z ) -> ( A ~~ B -> A = B ) ) ) |
| 66 | 61 65 | mpan9 | |- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B -> A = B ) ) |
| 67 | enrefnn | |- ( A e. _om -> A ~~ A ) |
|
| 68 | breq2 | |- ( A = B -> ( A ~~ A <-> A ~~ B ) ) |
|
| 69 | 67 68 | syl5ibcom | |- ( A e. _om -> ( A = B -> A ~~ B ) ) |
| 70 | 69 | adantr | |- ( ( A e. _om /\ B e. _om ) -> ( A = B -> A ~~ B ) ) |
| 71 | 66 70 | impbid | |- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |