This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A slightly tighter bound on the value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phibnd | |- ( N e. ( ZZ>= ` 2 ) -> ( phi ` N ) <_ ( N - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi | |- ( 1 ... ( N - 1 ) ) e. Fin |
|
| 2 | phibndlem | |- ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) ) |
|
| 3 | ssdomg | |- ( ( 1 ... ( N - 1 ) ) e. Fin -> ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) ) |
|
| 4 | 1 2 3 | mpsyl | |- ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) |
| 5 | fzfi | |- ( 1 ... N ) e. Fin |
|
| 6 | ssrab2 | |- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) |
|
| 7 | ssfi | |- ( ( ( 1 ... N ) e. Fin /\ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin ) |
|
| 8 | 5 6 7 | mp2an | |- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin |
| 9 | hashdom | |- ( ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin /\ ( 1 ... ( N - 1 ) ) e. Fin ) -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) ) |
|
| 10 | 8 1 9 | mp2an | |- ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) |
| 11 | 4 10 | sylibr | |- ( N e. ( ZZ>= ` 2 ) -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) ) |
| 12 | eluz2nn | |- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
|
| 13 | phival | |- ( N e. NN -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
|
| 14 | 12 13 | syl | |- ( N e. ( ZZ>= ` 2 ) -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 15 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 16 | hashfz1 | |- ( ( N - 1 ) e. NN0 -> ( # ` ( 1 ... ( N - 1 ) ) ) = ( N - 1 ) ) |
|
| 17 | 12 15 16 | 3syl | |- ( N e. ( ZZ>= ` 2 ) -> ( # ` ( 1 ... ( N - 1 ) ) ) = ( N - 1 ) ) |
| 18 | 17 | eqcomd | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) = ( # ` ( 1 ... ( N - 1 ) ) ) ) |
| 19 | 11 14 18 | 3brtr4d | |- ( N e. ( ZZ>= ` 2 ) -> ( phi ` N ) <_ ( N - 1 ) ) |