This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A slightly tighter bound on the value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phibnd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ϕ ‘ 𝑁 ) ≤ ( 𝑁 − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi | ⊢ ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin | |
| 2 | phibndlem | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) ) | |
| 3 | ssdomg | ⊢ ( ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin → ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... ( 𝑁 − 1 ) ) ) ) | |
| 4 | 1 2 3 | mpsyl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 5 | fzfi | ⊢ ( 1 ... 𝑁 ) ∈ Fin | |
| 6 | ssrab2 | ⊢ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... 𝑁 ) | |
| 7 | ssfi | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... 𝑁 ) ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin ) | |
| 8 | 5 6 7 | mp2an | ⊢ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin |
| 9 | hashdom | ⊢ ( ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin ∧ ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) ↔ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... ( 𝑁 − 1 ) ) ) ) | |
| 10 | 8 1 9 | mp2an | ⊢ ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) ↔ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 11 | 4 10 | sylibr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 12 | eluz2nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) | |
| 13 | phival | ⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
| 15 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 16 | hashfz1 | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) = ( 𝑁 − 1 ) ) | |
| 17 | 12 15 16 | 3syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) = ( 𝑁 − 1 ) ) |
| 18 | 17 | eqcomd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) = ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 19 | 11 14 18 | 3brtr4d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ϕ ‘ 𝑁 ) ≤ ( 𝑁 − 1 ) ) |