This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for phibnd . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phibndlem | |- ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | |- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
|
| 2 | fzm1 | |- ( N e. ( ZZ>= ` 1 ) -> ( x e. ( 1 ... N ) <-> ( x e. ( 1 ... ( N - 1 ) ) \/ x = N ) ) ) |
|
| 3 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 4 | 2 3 | eleq2s | |- ( N e. NN -> ( x e. ( 1 ... N ) <-> ( x e. ( 1 ... ( N - 1 ) ) \/ x = N ) ) ) |
| 5 | 4 | biimpa | |- ( ( N e. NN /\ x e. ( 1 ... N ) ) -> ( x e. ( 1 ... ( N - 1 ) ) \/ x = N ) ) |
| 6 | 5 | ord | |- ( ( N e. NN /\ x e. ( 1 ... N ) ) -> ( -. x e. ( 1 ... ( N - 1 ) ) -> x = N ) ) |
| 7 | 1 6 | sylan | |- ( ( N e. ( ZZ>= ` 2 ) /\ x e. ( 1 ... N ) ) -> ( -. x e. ( 1 ... ( N - 1 ) ) -> x = N ) ) |
| 8 | eluzelz | |- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
|
| 9 | gcdid | |- ( N e. ZZ -> ( N gcd N ) = ( abs ` N ) ) |
|
| 10 | 8 9 | syl | |- ( N e. ( ZZ>= ` 2 ) -> ( N gcd N ) = ( abs ` N ) ) |
| 11 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 12 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 13 | 12 | nn0ge0d | |- ( N e. NN -> 0 <_ N ) |
| 14 | 11 13 | absidd | |- ( N e. NN -> ( abs ` N ) = N ) |
| 15 | 1 14 | syl | |- ( N e. ( ZZ>= ` 2 ) -> ( abs ` N ) = N ) |
| 16 | 10 15 | eqtrd | |- ( N e. ( ZZ>= ` 2 ) -> ( N gcd N ) = N ) |
| 17 | 1re | |- 1 e. RR |
|
| 18 | eluz2gt1 | |- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
|
| 19 | ltne | |- ( ( 1 e. RR /\ 1 < N ) -> N =/= 1 ) |
|
| 20 | 17 18 19 | sylancr | |- ( N e. ( ZZ>= ` 2 ) -> N =/= 1 ) |
| 21 | 16 20 | eqnetrd | |- ( N e. ( ZZ>= ` 2 ) -> ( N gcd N ) =/= 1 ) |
| 22 | oveq1 | |- ( x = N -> ( x gcd N ) = ( N gcd N ) ) |
|
| 23 | 22 | neeq1d | |- ( x = N -> ( ( x gcd N ) =/= 1 <-> ( N gcd N ) =/= 1 ) ) |
| 24 | 21 23 | syl5ibrcom | |- ( N e. ( ZZ>= ` 2 ) -> ( x = N -> ( x gcd N ) =/= 1 ) ) |
| 25 | 24 | adantr | |- ( ( N e. ( ZZ>= ` 2 ) /\ x e. ( 1 ... N ) ) -> ( x = N -> ( x gcd N ) =/= 1 ) ) |
| 26 | 7 25 | syld | |- ( ( N e. ( ZZ>= ` 2 ) /\ x e. ( 1 ... N ) ) -> ( -. x e. ( 1 ... ( N - 1 ) ) -> ( x gcd N ) =/= 1 ) ) |
| 27 | 26 | necon4bd | |- ( ( N e. ( ZZ>= ` 2 ) /\ x e. ( 1 ... N ) ) -> ( ( x gcd N ) = 1 -> x e. ( 1 ... ( N - 1 ) ) ) ) |
| 28 | 27 | ralrimiva | |- ( N e. ( ZZ>= ` 2 ) -> A. x e. ( 1 ... N ) ( ( x gcd N ) = 1 -> x e. ( 1 ... ( N - 1 ) ) ) ) |
| 29 | rabss | |- ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) <-> A. x e. ( 1 ... N ) ( ( x gcd N ) = 1 -> x e. ( 1 ... ( N - 1 ) ) ) ) |
|
| 30 | 28 29 | sylibr | |- ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) ) |