This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity subgroup is a P -group for every prime P . (Contributed by Mario Carneiro, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgp0.1 | |- .0. = ( 0g ` G ) |
|
| Assertion | pgp0 | |- ( ( G e. Grp /\ P e. Prime ) -> P pGrp ( G |`s { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgp0.1 | |- .0. = ( 0g ` G ) |
|
| 2 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 3 | 2 | adantl | |- ( ( G e. Grp /\ P e. Prime ) -> P e. NN ) |
| 4 | 3 | nncnd | |- ( ( G e. Grp /\ P e. Prime ) -> P e. CC ) |
| 5 | 4 | exp0d | |- ( ( G e. Grp /\ P e. Prime ) -> ( P ^ 0 ) = 1 ) |
| 6 | 1 | fvexi | |- .0. e. _V |
| 7 | hashsng | |- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
|
| 8 | 6 7 | ax-mp | |- ( # ` { .0. } ) = 1 |
| 9 | 1 | 0subg | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| 10 | 9 | adantr | |- ( ( G e. Grp /\ P e. Prime ) -> { .0. } e. ( SubGrp ` G ) ) |
| 11 | eqid | |- ( G |`s { .0. } ) = ( G |`s { .0. } ) |
|
| 12 | 11 | subgbas | |- ( { .0. } e. ( SubGrp ` G ) -> { .0. } = ( Base ` ( G |`s { .0. } ) ) ) |
| 13 | 10 12 | syl | |- ( ( G e. Grp /\ P e. Prime ) -> { .0. } = ( Base ` ( G |`s { .0. } ) ) ) |
| 14 | 13 | fveq2d | |- ( ( G e. Grp /\ P e. Prime ) -> ( # ` { .0. } ) = ( # ` ( Base ` ( G |`s { .0. } ) ) ) ) |
| 15 | 8 14 | eqtr3id | |- ( ( G e. Grp /\ P e. Prime ) -> 1 = ( # ` ( Base ` ( G |`s { .0. } ) ) ) ) |
| 16 | 5 15 | eqtr2d | |- ( ( G e. Grp /\ P e. Prime ) -> ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) ) |
| 17 | 11 | subggrp | |- ( { .0. } e. ( SubGrp ` G ) -> ( G |`s { .0. } ) e. Grp ) |
| 18 | 10 17 | syl | |- ( ( G e. Grp /\ P e. Prime ) -> ( G |`s { .0. } ) e. Grp ) |
| 19 | simpr | |- ( ( G e. Grp /\ P e. Prime ) -> P e. Prime ) |
|
| 20 | 0nn0 | |- 0 e. NN0 |
|
| 21 | 20 | a1i | |- ( ( G e. Grp /\ P e. Prime ) -> 0 e. NN0 ) |
| 22 | eqid | |- ( Base ` ( G |`s { .0. } ) ) = ( Base ` ( G |`s { .0. } ) ) |
|
| 23 | 22 | pgpfi1 | |- ( ( ( G |`s { .0. } ) e. Grp /\ P e. Prime /\ 0 e. NN0 ) -> ( ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) -> P pGrp ( G |`s { .0. } ) ) ) |
| 24 | 18 19 21 23 | syl3anc | |- ( ( G e. Grp /\ P e. Prime ) -> ( ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) -> P pGrp ( G |`s { .0. } ) ) ) |
| 25 | 16 24 | mpd | |- ( ( G e. Grp /\ P e. Prime ) -> P pGrp ( G |`s { .0. } ) ) |