This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaorb.1 | |- .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
|
| Assertion | gaorb | |- ( A .~ B <-> ( A e. Y /\ B e. Y /\ E. h e. X ( h .(+) A ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaorb.1 | |- .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
|
| 2 | oveq2 | |- ( x = A -> ( g .(+) x ) = ( g .(+) A ) ) |
|
| 3 | eqeq12 | |- ( ( ( g .(+) x ) = ( g .(+) A ) /\ y = B ) -> ( ( g .(+) x ) = y <-> ( g .(+) A ) = B ) ) |
|
| 4 | 2 3 | sylan | |- ( ( x = A /\ y = B ) -> ( ( g .(+) x ) = y <-> ( g .(+) A ) = B ) ) |
| 5 | 4 | rexbidv | |- ( ( x = A /\ y = B ) -> ( E. g e. X ( g .(+) x ) = y <-> E. g e. X ( g .(+) A ) = B ) ) |
| 6 | oveq1 | |- ( g = h -> ( g .(+) A ) = ( h .(+) A ) ) |
|
| 7 | 6 | eqeq1d | |- ( g = h -> ( ( g .(+) A ) = B <-> ( h .(+) A ) = B ) ) |
| 8 | 7 | cbvrexvw | |- ( E. g e. X ( g .(+) A ) = B <-> E. h e. X ( h .(+) A ) = B ) |
| 9 | 5 8 | bitrdi | |- ( ( x = A /\ y = B ) -> ( E. g e. X ( g .(+) x ) = y <-> E. h e. X ( h .(+) A ) = B ) ) |
| 10 | vex | |- x e. _V |
|
| 11 | vex | |- y e. _V |
|
| 12 | 10 11 | prss | |- ( ( x e. Y /\ y e. Y ) <-> { x , y } C_ Y ) |
| 13 | 12 | anbi1i | |- ( ( ( x e. Y /\ y e. Y ) /\ E. g e. X ( g .(+) x ) = y ) <-> ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) ) |
| 14 | 13 | opabbii | |- { <. x , y >. | ( ( x e. Y /\ y e. Y ) /\ E. g e. X ( g .(+) x ) = y ) } = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
| 15 | 1 14 | eqtr4i | |- .~ = { <. x , y >. | ( ( x e. Y /\ y e. Y ) /\ E. g e. X ( g .(+) x ) = y ) } |
| 16 | 9 15 | brab2a | |- ( A .~ B <-> ( ( A e. Y /\ B e. Y ) /\ E. h e. X ( h .(+) A ) = B ) ) |
| 17 | df-3an | |- ( ( A e. Y /\ B e. Y /\ E. h e. X ( h .(+) A ) = B ) <-> ( ( A e. Y /\ B e. Y ) /\ E. h e. X ( h .(+) A ) = B ) ) |
|
| 18 | 16 17 | bitr4i | |- ( A .~ B <-> ( A e. Y /\ B e. Y /\ E. h e. X ( h .(+) A ) = B ) ) |