This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of the function F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
||
| qlift.3 | |- ( ph -> R Er X ) |
||
| qlift.4 | |- ( ph -> X e. V ) |
||
| Assertion | qliftf | |- ( ph -> ( Fun F <-> F : ( X /. R ) --> Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| 2 | qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
|
| 3 | qlift.3 | |- ( ph -> R Er X ) |
|
| 4 | qlift.4 | |- ( ph -> X e. V ) |
|
| 5 | 1 2 3 4 | qliftlem | |- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
| 6 | 1 5 2 | fliftf | |- ( ph -> ( Fun F <-> F : ran ( x e. X |-> [ x ] R ) --> Y ) ) |
| 7 | df-qs | |- ( X /. R ) = { y | E. x e. X y = [ x ] R } |
|
| 8 | eqid | |- ( x e. X |-> [ x ] R ) = ( x e. X |-> [ x ] R ) |
|
| 9 | 8 | rnmpt | |- ran ( x e. X |-> [ x ] R ) = { y | E. x e. X y = [ x ] R } |
| 10 | 7 9 | eqtr4i | |- ( X /. R ) = ran ( x e. X |-> [ x ] R ) |
| 11 | 10 | a1i | |- ( ph -> ( X /. R ) = ran ( x e. X |-> [ x ] R ) ) |
| 12 | 11 | feq2d | |- ( ph -> ( F : ( X /. R ) --> Y <-> F : ran ( x e. X |-> [ x ] R ) --> Y ) ) |
| 13 | 6 12 | bitr4d | |- ( ph -> ( Fun F <-> F : ( X /. R ) --> Y ) ) |