This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gasta.1 | |- X = ( Base ` G ) |
|
| gasta.2 | |- H = { u e. X | ( u .(+) A ) = A } |
||
| orbsta.r | |- .~ = ( G ~QG H ) |
||
| orbsta.f | |- F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) |
||
| Assertion | orbstaval | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ B e. X ) -> ( F ` [ B ] .~ ) = ( B .(+) A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 | |- X = ( Base ` G ) |
|
| 2 | gasta.2 | |- H = { u e. X | ( u .(+) A ) = A } |
|
| 3 | orbsta.r | |- .~ = ( G ~QG H ) |
|
| 4 | orbsta.f | |- F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) |
|
| 5 | ovexd | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> ( k .(+) A ) e. _V ) |
|
| 6 | 1 2 | gastacl | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> H e. ( SubGrp ` G ) ) |
| 7 | 1 3 | eqger | |- ( H e. ( SubGrp ` G ) -> .~ Er X ) |
| 8 | 6 7 | syl | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> .~ Er X ) |
| 9 | 1 | fvexi | |- X e. _V |
| 10 | 9 | a1i | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> X e. _V ) |
| 11 | oveq1 | |- ( k = B -> ( k .(+) A ) = ( B .(+) A ) ) |
|
| 12 | 1 2 3 4 | orbstafun | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> Fun F ) |
| 13 | 4 5 8 10 11 12 | qliftval | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ B e. X ) -> ( F ` [ B ] .~ ) = ( B .(+) A ) ) |