This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of the group action operation. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaf.1 | |- X = ( Base ` G ) |
|
| Assertion | gaf | |- ( .(+) e. ( G GrpAct Y ) -> .(+) : ( X X. Y ) --> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaf.1 | |- X = ( Base ` G ) |
|
| 2 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 3 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 4 | 1 2 3 | isga | |- ( .(+) e. ( G GrpAct Y ) <-> ( ( G e. Grp /\ Y e. _V ) /\ ( .(+) : ( X X. Y ) --> Y /\ A. x e. Y ( ( ( 0g ` G ) .(+) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) ) |
| 5 | 4 | simprbi | |- ( .(+) e. ( G GrpAct Y ) -> ( .(+) : ( X X. Y ) --> Y /\ A. x e. Y ( ( ( 0g ` G ) .(+) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) |
| 6 | 5 | simpld | |- ( .(+) e. ( G GrpAct Y ) -> .(+) : ( X X. Y ) --> Y ) |