This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | |- O = ( oppR ` R ) |
|
| Assertion | opprsubg | |- ( SubGrp ` R ) = ( SubGrp ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | |- O = ( oppR ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 1 2 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 4 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 5 | 1 4 | oppradd | |- ( +g ` R ) = ( +g ` O ) |
| 6 | 3 5 | grpprop | |- ( R e. Grp <-> O e. Grp ) |
| 7 | biid | |- ( x C_ ( Base ` R ) <-> x C_ ( Base ` R ) ) |
|
| 8 | eqid | |- ( R |`s x ) = ( R |`s x ) |
|
| 9 | 8 2 | ressbas | |- ( x e. _V -> ( x i^i ( Base ` R ) ) = ( Base ` ( R |`s x ) ) ) |
| 10 | 9 | elv | |- ( x i^i ( Base ` R ) ) = ( Base ` ( R |`s x ) ) |
| 11 | eqid | |- ( O |`s x ) = ( O |`s x ) |
|
| 12 | 11 3 | ressbas | |- ( x e. _V -> ( x i^i ( Base ` R ) ) = ( Base ` ( O |`s x ) ) ) |
| 13 | 12 | elv | |- ( x i^i ( Base ` R ) ) = ( Base ` ( O |`s x ) ) |
| 14 | 10 13 | eqtr3i | |- ( Base ` ( R |`s x ) ) = ( Base ` ( O |`s x ) ) |
| 15 | 8 4 | ressplusg | |- ( x e. _V -> ( +g ` R ) = ( +g ` ( R |`s x ) ) ) |
| 16 | 11 5 | ressplusg | |- ( x e. _V -> ( +g ` R ) = ( +g ` ( O |`s x ) ) ) |
| 17 | 15 16 | eqtr3d | |- ( x e. _V -> ( +g ` ( R |`s x ) ) = ( +g ` ( O |`s x ) ) ) |
| 18 | 17 | elv | |- ( +g ` ( R |`s x ) ) = ( +g ` ( O |`s x ) ) |
| 19 | 14 18 | grpprop | |- ( ( R |`s x ) e. Grp <-> ( O |`s x ) e. Grp ) |
| 20 | 6 7 19 | 3anbi123i | |- ( ( R e. Grp /\ x C_ ( Base ` R ) /\ ( R |`s x ) e. Grp ) <-> ( O e. Grp /\ x C_ ( Base ` R ) /\ ( O |`s x ) e. Grp ) ) |
| 21 | 2 | issubg | |- ( x e. ( SubGrp ` R ) <-> ( R e. Grp /\ x C_ ( Base ` R ) /\ ( R |`s x ) e. Grp ) ) |
| 22 | 3 | issubg | |- ( x e. ( SubGrp ` O ) <-> ( O e. Grp /\ x C_ ( Base ` R ) /\ ( O |`s x ) e. Grp ) ) |
| 23 | 20 21 22 | 3bitr4i | |- ( x e. ( SubGrp ` R ) <-> x e. ( SubGrp ` O ) ) |
| 24 | 23 | eqriv | |- ( SubGrp ` R ) = ( SubGrp ` O ) |