This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgnzr.1 | |- S = ( R |`s A ) |
|
| Assertion | subrgnzr | |- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> S e. NzRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgnzr.1 | |- S = ( R |`s A ) |
|
| 2 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 3 | 2 | adantl | |- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> S e. Ring ) |
| 4 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 5 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 6 | 4 5 | nzrnz | |- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 7 | 6 | adantr | |- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 8 | 1 4 | subrg1 | |- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 9 | 8 | adantl | |- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 10 | 1 5 | subrg0 | |- ( A e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` S ) ) |
| 11 | 10 | adantl | |- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 0g ` R ) = ( 0g ` S ) ) |
| 12 | 7 9 11 | 3netr3d | |- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` S ) =/= ( 0g ` S ) ) |
| 13 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 14 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 15 | 13 14 | isnzr | |- ( S e. NzRing <-> ( S e. Ring /\ ( 1r ` S ) =/= ( 0g ` S ) ) ) |
| 16 | 3 12 15 | sylanbrc | |- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> S e. NzRing ) |