This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfdiag.o | |- O = ( oppCat ` C ) |
|
| oppfdiag.p | |- P = ( oppCat ` D ) |
||
| oppfdiag.l | |- L = ( C DiagFunc D ) |
||
| oppfdiag.c | |- ( ph -> C e. Cat ) |
||
| oppfdiag.d | |- ( ph -> D e. Cat ) |
||
| oppfdiag1a.a | |- A = ( Base ` C ) |
||
| oppfdiag1a.x | |- ( ph -> X e. A ) |
||
| Assertion | oppfdiag1a | |- ( ph -> ( oppFunc ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfdiag.o | |- O = ( oppCat ` C ) |
|
| 2 | oppfdiag.p | |- P = ( oppCat ` D ) |
|
| 3 | oppfdiag.l | |- L = ( C DiagFunc D ) |
|
| 4 | oppfdiag.c | |- ( ph -> C e. Cat ) |
|
| 5 | oppfdiag.d | |- ( ph -> D e. Cat ) |
|
| 6 | oppfdiag1a.a | |- A = ( Base ` C ) |
|
| 7 | oppfdiag1a.x | |- ( ph -> X e. A ) |
|
| 8 | eqid | |- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
|
| 9 | 3 4 5 6 7 8 | diag1cl | |- ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 10 | 9 | fvresd | |- ( ph -> ( ( oppFunc |` ( D Func C ) ) ` ( ( 1st ` L ) ` X ) ) = ( oppFunc ` ( ( 1st ` L ) ` X ) ) ) |
| 11 | eqidd | |- ( ph -> ( oppFunc |` ( D Func C ) ) = ( oppFunc |` ( D Func C ) ) ) |
|
| 12 | 1 2 3 4 5 11 6 7 | oppfdiag1 | |- ( ph -> ( ( oppFunc |` ( D Func C ) ) ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) |
| 13 | 10 12 | eqtr3d | |- ( ph -> ( oppFunc ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) |