This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon (through epweon ) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfr | |- _E Fr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr | |- ( _E Fr On <-> A. x ( ( x C_ On /\ x =/= (/) ) -> E. z e. x ( x i^i z ) = (/) ) ) |
|
| 2 | n0 | |- ( x =/= (/) <-> E. y y e. x ) |
|
| 3 | ineq2 | |- ( z = y -> ( x i^i z ) = ( x i^i y ) ) |
|
| 4 | 3 | eqeq1d | |- ( z = y -> ( ( x i^i z ) = (/) <-> ( x i^i y ) = (/) ) ) |
| 5 | 4 | rspcev | |- ( ( y e. x /\ ( x i^i y ) = (/) ) -> E. z e. x ( x i^i z ) = (/) ) |
| 6 | 5 | adantll | |- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) = (/) ) -> E. z e. x ( x i^i z ) = (/) ) |
| 7 | inss1 | |- ( x i^i y ) C_ x |
|
| 8 | ssel2 | |- ( ( x C_ On /\ y e. x ) -> y e. On ) |
|
| 9 | eloni | |- ( y e. On -> Ord y ) |
|
| 10 | ordfr | |- ( Ord y -> _E Fr y ) |
|
| 11 | 8 9 10 | 3syl | |- ( ( x C_ On /\ y e. x ) -> _E Fr y ) |
| 12 | inss2 | |- ( x i^i y ) C_ y |
|
| 13 | vex | |- x e. _V |
|
| 14 | 13 | inex1 | |- ( x i^i y ) e. _V |
| 15 | 14 | epfrc | |- ( ( _E Fr y /\ ( x i^i y ) C_ y /\ ( x i^i y ) =/= (/) ) -> E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) ) |
| 16 | 12 15 | mp3an2 | |- ( ( _E Fr y /\ ( x i^i y ) =/= (/) ) -> E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) ) |
| 17 | 11 16 | sylan | |- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) =/= (/) ) -> E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) ) |
| 18 | inass | |- ( ( x i^i y ) i^i z ) = ( x i^i ( y i^i z ) ) |
|
| 19 | 8 9 | syl | |- ( ( x C_ On /\ y e. x ) -> Ord y ) |
| 20 | elinel2 | |- ( z e. ( x i^i y ) -> z e. y ) |
|
| 21 | ordelss | |- ( ( Ord y /\ z e. y ) -> z C_ y ) |
|
| 22 | 19 20 21 | syl2an | |- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> z C_ y ) |
| 23 | sseqin2 | |- ( z C_ y <-> ( y i^i z ) = z ) |
|
| 24 | 22 23 | sylib | |- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> ( y i^i z ) = z ) |
| 25 | 24 | ineq2d | |- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> ( x i^i ( y i^i z ) ) = ( x i^i z ) ) |
| 26 | 18 25 | eqtrid | |- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> ( ( x i^i y ) i^i z ) = ( x i^i z ) ) |
| 27 | 26 | eqeq1d | |- ( ( ( x C_ On /\ y e. x ) /\ z e. ( x i^i y ) ) -> ( ( ( x i^i y ) i^i z ) = (/) <-> ( x i^i z ) = (/) ) ) |
| 28 | 27 | rexbidva | |- ( ( x C_ On /\ y e. x ) -> ( E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) <-> E. z e. ( x i^i y ) ( x i^i z ) = (/) ) ) |
| 29 | 28 | adantr | |- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) =/= (/) ) -> ( E. z e. ( x i^i y ) ( ( x i^i y ) i^i z ) = (/) <-> E. z e. ( x i^i y ) ( x i^i z ) = (/) ) ) |
| 30 | 17 29 | mpbid | |- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) =/= (/) ) -> E. z e. ( x i^i y ) ( x i^i z ) = (/) ) |
| 31 | ssrexv | |- ( ( x i^i y ) C_ x -> ( E. z e. ( x i^i y ) ( x i^i z ) = (/) -> E. z e. x ( x i^i z ) = (/) ) ) |
|
| 32 | 7 30 31 | mpsyl | |- ( ( ( x C_ On /\ y e. x ) /\ ( x i^i y ) =/= (/) ) -> E. z e. x ( x i^i z ) = (/) ) |
| 33 | 6 32 | pm2.61dane | |- ( ( x C_ On /\ y e. x ) -> E. z e. x ( x i^i z ) = (/) ) |
| 34 | 33 | ex | |- ( x C_ On -> ( y e. x -> E. z e. x ( x i^i z ) = (/) ) ) |
| 35 | 34 | exlimdv | |- ( x C_ On -> ( E. y y e. x -> E. z e. x ( x i^i z ) = (/) ) ) |
| 36 | 2 35 | biimtrid | |- ( x C_ On -> ( x =/= (/) -> E. z e. x ( x i^i z ) = (/) ) ) |
| 37 | 36 | imp | |- ( ( x C_ On /\ x =/= (/) ) -> E. z e. x ( x i^i z ) = (/) ) |
| 38 | 1 37 | mpgbir | |- _E Fr On |