This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon (through epweon ) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfr | ⊢ E Fr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr | ⊢ ( E Fr On ↔ ∀ 𝑥 ( ( 𝑥 ⊆ On ∧ 𝑥 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) | |
| 2 | n0 | ⊢ ( 𝑥 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) | |
| 3 | ineq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∩ 𝑧 ) = ( 𝑥 ∩ 𝑦 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ∩ 𝑧 ) = ∅ ↔ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 5 | 4 | rspcev | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
| 6 | 5 | adantll | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
| 7 | inss1 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 | |
| 8 | ssel2 | ⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 9 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 10 | ordfr | ⊢ ( Ord 𝑦 → E Fr 𝑦 ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → E Fr 𝑦 ) |
| 12 | inss2 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 | |
| 13 | vex | ⊢ 𝑥 ∈ V | |
| 14 | 13 | inex1 | ⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
| 15 | 14 | epfrc | ⊢ ( ( E Fr 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ) |
| 16 | 12 15 | mp3an2 | ⊢ ( ( E Fr 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ) |
| 17 | 11 16 | sylan | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ) |
| 18 | inass | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ∩ ( 𝑦 ∩ 𝑧 ) ) | |
| 19 | 8 9 | syl | ⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) |
| 20 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) → 𝑧 ∈ 𝑦 ) | |
| 21 | ordelss | ⊢ ( ( Ord 𝑦 ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ⊆ 𝑦 ) | |
| 22 | 19 20 21 | syl2an | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑧 ⊆ 𝑦 ) |
| 23 | sseqin2 | ⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑦 ∩ 𝑧 ) = 𝑧 ) | |
| 24 | 22 23 | sylib | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( 𝑦 ∩ 𝑧 ) = 𝑧 ) |
| 25 | 24 | ineq2d | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( 𝑥 ∩ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑥 ∩ 𝑧 ) ) |
| 26 | 18 25 | eqtrid | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ∩ 𝑧 ) ) |
| 27 | 26 | eqeq1d | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ↔ ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 28 | 27 | rexbidva | ⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ↔ ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ( ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ↔ ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 30 | 17 29 | mpbid | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝑥 ∩ 𝑧 ) = ∅ ) |
| 31 | ssrexv | ⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 → ( ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝑥 ∩ 𝑧 ) = ∅ → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) | |
| 32 | 7 30 31 | mpsyl | ⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
| 33 | 6 32 | pm2.61dane | ⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
| 34 | 33 | ex | ⊢ ( 𝑥 ⊆ On → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 35 | 34 | exlimdv | ⊢ ( 𝑥 ⊆ On → ( ∃ 𝑦 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 36 | 2 35 | biimtrid | ⊢ ( 𝑥 ⊆ On → ( 𝑥 ≠ ∅ → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 37 | 36 | imp | ⊢ ( ( 𝑥 ⊆ On ∧ 𝑥 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
| 38 | 1 37 | mpgbir | ⊢ E Fr On |