This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004) (Revised by David Abernethy, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | epfrc.1 | |- B e. _V |
|
| Assertion | epfrc | |- ( ( _E Fr A /\ B C_ A /\ B =/= (/) ) -> E. x e. B ( B i^i x ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epfrc.1 | |- B e. _V |
|
| 2 | 1 | frc | |- ( ( _E Fr A /\ B C_ A /\ B =/= (/) ) -> E. x e. B { y e. B | y _E x } = (/) ) |
| 3 | dfin5 | |- ( B i^i x ) = { y e. B | y e. x } |
|
| 4 | epel | |- ( y _E x <-> y e. x ) |
|
| 5 | 4 | rabbii | |- { y e. B | y _E x } = { y e. B | y e. x } |
| 6 | 3 5 | eqtr4i | |- ( B i^i x ) = { y e. B | y _E x } |
| 7 | 6 | eqeq1i | |- ( ( B i^i x ) = (/) <-> { y e. B | y _E x } = (/) ) |
| 8 | 7 | rexbii | |- ( E. x e. B ( B i^i x ) = (/) <-> E. x e. B { y e. B | y _E x } = (/) ) |
| 9 | 2 8 | sylibr | |- ( ( _E Fr A /\ B C_ A /\ B =/= (/) ) -> E. x e. B ( B i^i x ) = (/) ) |