This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfepfr | |- ( _E Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr2 | |- ( _E Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z _E y } = (/) ) ) |
|
| 2 | epel | |- ( z _E y <-> z e. y ) |
|
| 3 | 2 | rabbii | |- { z e. x | z _E y } = { z e. x | z e. y } |
| 4 | dfin5 | |- ( x i^i y ) = { z e. x | z e. y } |
|
| 5 | 3 4 | eqtr4i | |- { z e. x | z _E y } = ( x i^i y ) |
| 6 | 5 | eqeq1i | |- ( { z e. x | z _E y } = (/) <-> ( x i^i y ) = (/) ) |
| 7 | 6 | rexbii | |- ( E. y e. x { z e. x | z _E y } = (/) <-> E. y e. x ( x i^i y ) = (/) ) |
| 8 | 7 | imbi2i | |- ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z _E y } = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i y ) = (/) ) ) |
| 9 | 8 | albii | |- ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z _E y } = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i y ) = (/) ) ) |
| 10 | 1 9 | bitri | |- ( _E Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i y ) = (/) ) ) |