This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of G (see om2uz0i ). (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| Assertion | om2uzrani | |- ran G = ( ZZ>= ` C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | frfnom | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) Fn _om |
|
| 4 | 2 | fneq1i | |- ( G Fn _om <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) Fn _om ) |
| 5 | 3 4 | mpbir | |- G Fn _om |
| 6 | fvelrnb | |- ( G Fn _om -> ( y e. ran G <-> E. z e. _om ( G ` z ) = y ) ) |
|
| 7 | 5 6 | ax-mp | |- ( y e. ran G <-> E. z e. _om ( G ` z ) = y ) |
| 8 | 1 2 | om2uzuzi | |- ( z e. _om -> ( G ` z ) e. ( ZZ>= ` C ) ) |
| 9 | eleq1 | |- ( ( G ` z ) = y -> ( ( G ` z ) e. ( ZZ>= ` C ) <-> y e. ( ZZ>= ` C ) ) ) |
|
| 10 | 8 9 | syl5ibcom | |- ( z e. _om -> ( ( G ` z ) = y -> y e. ( ZZ>= ` C ) ) ) |
| 11 | 10 | rexlimiv | |- ( E. z e. _om ( G ` z ) = y -> y e. ( ZZ>= ` C ) ) |
| 12 | 7 11 | sylbi | |- ( y e. ran G -> y e. ( ZZ>= ` C ) ) |
| 13 | eleq1 | |- ( z = C -> ( z e. ran G <-> C e. ran G ) ) |
|
| 14 | eleq1 | |- ( z = y -> ( z e. ran G <-> y e. ran G ) ) |
|
| 15 | eleq1 | |- ( z = ( y + 1 ) -> ( z e. ran G <-> ( y + 1 ) e. ran G ) ) |
|
| 16 | 1 2 | om2uz0i | |- ( G ` (/) ) = C |
| 17 | peano1 | |- (/) e. _om |
|
| 18 | fnfvelrn | |- ( ( G Fn _om /\ (/) e. _om ) -> ( G ` (/) ) e. ran G ) |
|
| 19 | 5 17 18 | mp2an | |- ( G ` (/) ) e. ran G |
| 20 | 16 19 | eqeltrri | |- C e. ran G |
| 21 | 1 2 | om2uzsuci | |- ( z e. _om -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
| 22 | oveq1 | |- ( ( G ` z ) = y -> ( ( G ` z ) + 1 ) = ( y + 1 ) ) |
|
| 23 | 21 22 | sylan9eq | |- ( ( z e. _om /\ ( G ` z ) = y ) -> ( G ` suc z ) = ( y + 1 ) ) |
| 24 | peano2 | |- ( z e. _om -> suc z e. _om ) |
|
| 25 | fnfvelrn | |- ( ( G Fn _om /\ suc z e. _om ) -> ( G ` suc z ) e. ran G ) |
|
| 26 | 5 24 25 | sylancr | |- ( z e. _om -> ( G ` suc z ) e. ran G ) |
| 27 | 26 | adantr | |- ( ( z e. _om /\ ( G ` z ) = y ) -> ( G ` suc z ) e. ran G ) |
| 28 | 23 27 | eqeltrrd | |- ( ( z e. _om /\ ( G ` z ) = y ) -> ( y + 1 ) e. ran G ) |
| 29 | 28 | rexlimiva | |- ( E. z e. _om ( G ` z ) = y -> ( y + 1 ) e. ran G ) |
| 30 | 7 29 | sylbi | |- ( y e. ran G -> ( y + 1 ) e. ran G ) |
| 31 | 30 | a1i | |- ( y e. ( ZZ>= ` C ) -> ( y e. ran G -> ( y + 1 ) e. ran G ) ) |
| 32 | 13 14 15 14 20 31 | uzind4i | |- ( y e. ( ZZ>= ` C ) -> y e. ran G ) |
| 33 | 12 32 | impbii | |- ( y e. ran G <-> y e. ( ZZ>= ` C ) ) |
| 34 | 33 | eqriv | |- ran G = ( ZZ>= ` C ) |