This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtri3 | |- ( ( Ord A /\ Ord B ) -> ( A = B <-> -. ( A e. B \/ B e. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr | |- ( Ord B -> -. B e. B ) |
|
| 2 | 1 | adantl | |- ( ( Ord A /\ Ord B ) -> -. B e. B ) |
| 3 | eleq2 | |- ( A = B -> ( B e. A <-> B e. B ) ) |
|
| 4 | 3 | notbid | |- ( A = B -> ( -. B e. A <-> -. B e. B ) ) |
| 5 | 2 4 | syl5ibrcom | |- ( ( Ord A /\ Ord B ) -> ( A = B -> -. B e. A ) ) |
| 6 | 5 | pm4.71d | |- ( ( Ord A /\ Ord B ) -> ( A = B <-> ( A = B /\ -. B e. A ) ) ) |
| 7 | pm5.61 | |- ( ( ( A = B \/ B e. A ) /\ -. B e. A ) <-> ( A = B /\ -. B e. A ) ) |
|
| 8 | pm4.52 | |- ( ( ( A = B \/ B e. A ) /\ -. B e. A ) <-> -. ( -. ( A = B \/ B e. A ) \/ B e. A ) ) |
|
| 9 | 7 8 | bitr3i | |- ( ( A = B /\ -. B e. A ) <-> -. ( -. ( A = B \/ B e. A ) \/ B e. A ) ) |
| 10 | 6 9 | bitrdi | |- ( ( Ord A /\ Ord B ) -> ( A = B <-> -. ( -. ( A = B \/ B e. A ) \/ B e. A ) ) ) |
| 11 | ordtri2 | |- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
|
| 12 | 11 | orbi1d | |- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ B e. A ) <-> ( -. ( A = B \/ B e. A ) \/ B e. A ) ) ) |
| 13 | 12 | notbid | |- ( ( Ord A /\ Ord B ) -> ( -. ( A e. B \/ B e. A ) <-> -. ( -. ( A = B \/ B e. A ) \/ B e. A ) ) ) |
| 14 | 10 13 | bitr4d | |- ( ( Ord A /\ Ord B ) -> ( A = B <-> -. ( A e. B \/ B e. A ) ) ) |