This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfn | |- ( F Fn A -> ( # ` F ) = ( # ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmeng | |- ( ( F Fn A /\ A e. _V ) -> A ~~ F ) |
|
| 2 | ensym | |- ( A ~~ F -> F ~~ A ) |
|
| 3 | hasheni | |- ( F ~~ A -> ( # ` F ) = ( # ` A ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( ( F Fn A /\ A e. _V ) -> ( # ` F ) = ( # ` A ) ) |
| 5 | dmexg | |- ( F e. _V -> dom F e. _V ) |
|
| 6 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 7 | 6 | eleq1d | |- ( F Fn A -> ( dom F e. _V <-> A e. _V ) ) |
| 8 | 5 7 | imbitrid | |- ( F Fn A -> ( F e. _V -> A e. _V ) ) |
| 9 | 8 | con3dimp | |- ( ( F Fn A /\ -. A e. _V ) -> -. F e. _V ) |
| 10 | fvprc | |- ( -. F e. _V -> ( # ` F ) = (/) ) |
|
| 11 | 9 10 | syl | |- ( ( F Fn A /\ -. A e. _V ) -> ( # ` F ) = (/) ) |
| 12 | fvprc | |- ( -. A e. _V -> ( # ` A ) = (/) ) |
|
| 13 | 12 | adantl | |- ( ( F Fn A /\ -. A e. _V ) -> ( # ` A ) = (/) ) |
| 14 | 11 13 | eqtr4d | |- ( ( F Fn A /\ -. A e. _V ) -> ( # ` F ) = ( # ` A ) ) |
| 15 | 4 14 | pm2.61dan | |- ( F Fn A -> ( # ` F ) = ( # ` A ) ) |